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Kurzfassung

Turnier-Poker ist ein beliebtes stochastisches Spiel mit imperfekter Information. Das
Spiel bewegt sich abhängig von den Aktionen der Spieler zufällig in einer Menge von
Turnierzuständen. Heuristische Equity Modelle sind ein häufig genutztes Werkzeug um
die erwarteten Auszahlungen der Spieler für einen gewählten Turnierzustand anhand der
Chipstände zu approximieren. Trotz der Beliebtheit dieser Modelle, und einer Auswahl
von dedizierter Software um sie auf Spielsituationen anzuwenden, gibt es kaum öffentlich
verfügbare Evaluierungen der verwendeten Methoden.

Als Teil dieser Arbeit wird durch Anwendung von aktuellen Techniken zur Lösung von
Spielen mit imperfekter Information ein ε-Nash Gleichgewicht für eine umfangreiche
Abstraktion eines Poker-Turnierspiels berechnet. Die Auszahlungswerte und Strategien
dieser Lösung werden im Folgenden als Referenz verwendet, um die Genauigkeit der
heuristischen Equity Modelle zu untersuchen.

Die bereits bekannte Tendenz des Malmuth-Harville Standardmodells zur Unterschätzung
der Auszahlungen für Spieler mit großen Chipständen wird als Teil dieser Evaluierung
bestätigt, und wird von dem neueren Roberts Modell in einem geringeren Ausmaß geteilt.

Von einer der zugrunde liegenden Annahmen der untersuchten Heuristiken, die Ge-
winnwahrscheinlichkeiten der Spieler wären proportional zu ihren Chipständen, wurden
in der berechneten Spielabstraktion bemerkenswerte Abweichungen gefunden. Für die
ebenfalls betrachtete Suchtechnik Future Game Simulation (FGS) konnte eine deutliche
Verbesserung gegenüber den Standardmodellen festgestellt werden.
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Abstract

Tournament poker is a popular stochastic game with imperfect information, the game
transitions probabilistically between tournament states dependent on the players’ actions.
Several heuristic equity models are widely employed by human players to estimate the
expected payoffs for tournament states. Despite the popularity of these models and the
availability of dedicated software for applying them, little public research is available
regarding their accuracy.

In this work, we calculate an ε-Nash equilibrium for a large tournament game instance
by applying state-of-the-art techniques for solving games of imperfect information, and
use the results of this game to evaluate the performance of the heuristic approaches.

We find that the de facto standard Malmuth-Harville heuristic and the model proposed by
Roberts display similar accuracy in our game. The known tendency of Malmuth-Harville
to underestimate payoffs for large chip stacks is shared by Roberts, although to a smaller
degree.

The common underlying assumption of winning probabilities being proportional to the
chip stacks does not hold true in our game setting. We also evaluate an adversarial search
technique called Future Game Simulation (FGS), and find that it provides a significant
improvement over the standard heuristics.
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CHAPTER 1
Introduction

The game of poker offers interesting challenges for research in the fields of artificial
intelligence and game theory that are not present in games like chess or backgammon.
As a game of chance with imperfect information, agents need to deal with uncertainty
and make deductions about hidden information.

As John von Neumann, one of the authors of [VNM44] and a pioneer in the field of
game theory stated: “Real life consists of bluffing, of little tactics of deception, of asking
yourself what is the other man going to think I mean to do. And that is what games are
about in my theory.”[Pou92]

Poker has traditionally also been a game played for considerable amounts of money. With
the rise of online poker in the early 2000s, the number of players dedicated to studying
the game has increased substantially.

With significant interest from recreational and professional human players, along with a
sizable market, the segment of poker tools and instructional services has flourished in
recent years. Especially for online play, a wide variety of poker tools are available to
help players with learning and improving their understanding of the game. These tools
range from extremely popular database software and heads-up displays to analytical
game theory software.

In this latter category of poker related game theory software, tournament poker - specif-
ically single table tournaments - have led the development. The endgame in these
tournaments allows some powerful abstractions which make calculation of hands consid-
erably less complex than their cash game counterparts.

Correct play in tournament late game is often surprisingly counter-intuitive because of the
non-linearity between chips stacks and expected payoffs. Players realized that studying
models to better understand the game structure is essential for playing competently in
this format.
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1. Introduction

With the underlying calculations being far too complex to perform manually, dedicated
software tools became popular among players. The first generation of tournament analysis
tools was released around ten years ago and provided a comparatively simple application
of tournament equity models by today’s standards.

Partly driven by the Annual Computer Poker Competition [ACP], most academic research
focused on the cash game variants of poker and considerable progress has been made in
this area during recent years. Early in 2015, the poker research group at the University
of Alberta “essentially solved” the Fixed Limit Hold’em variant for two players.[BBJT15]
This marked the first time that a poker variant somewhat popular among human players
was solved to a high degree of accuracy using only lossless abstractions. Later in the
same year, a team at Carnegie Mellon University organized the “Brains vs. AI” [Gan15]
challenge match between their two player No Limit Hold’em agent “Claudico” and some
of the best human players in this game format. Both research teams received mainstream
media attention for their work.

While single table tournaments are some of the most analyzed games in terms of com-
mercially available software, they received little attention in terms of academic research.
A notable exception are the papers about 3-player jam/fold games by Ganzfried and
Sandholm [GS08] [GS09] that we will use as a basis for this work. Outside of loose
collaboration by some of the authors of commercial software, very little analysis of
the heuristics used in these games has been published. This is especially surprising as
Malmuth-Harville, the de-facto standard heuristic for tournament equity calculations,
was actually published in the context of horse racing in 1973 [Har73].

1.1 Texas Hold’em Poker

We will first give a short introduction to the game rules and general game structure
of Texas Hold’em. Like most poker variants, Texas Hold’em is a game of chance with
imperfect information. It contains both stochastic elements (dealing cards from a shuffled
deck) and hidden information (private hole cards visible only to a single player).

1.1.1 Game Overview

Texas Hold’em is a Poker variant with 4 betting rounds. At the beginning of a hand
blinds and antes are posted and each player receives two private cards from a 52 card
deck. These private cards are called hole cards, they remain hidden to all other players
and are only revealed if there is a showdown at the end of the hand.

After the first betting round, public community cards are dealt on the Flop (3 cards),
Turn (1 card) and River (1 card), each of these steps is followed by another betting round.
After the final round of betting all remaining players see a showdown and compare their
hands to determine the winner of the accumulated pot.
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1.1. Texas Hold’em Poker

1.1.2 Positions, Blinds and Antes

The player positions during a poker hand are determined by a tag called the dealer button
or Button (BU). It is placed in front of a random player at the start of the game and
moves clockwise to the next player after every hand.

Before the hole cards are dealt, the two players in clockwise direction following the BU
are the Small Blind (SB) and Big Blind (BB) positions. The players in these positions
are required to post blind bets, usually with BB = 2× SB. Optionally all players have
to post an additional Ante.

ID Position Preflop Postflop

EP1 Early Position 1 1. 3.
EP2 Early Position 2 2. 4.
MP1 Middle Position 1 3. 5.
MP2 Middle Position 2 4. 6.
HJ Hijack 5. 7.
CO Cut-Off 6. 8.
BU Button 7. 9.
SB Small Blind 8. 1.
BB Big Blind 9. 2.

Table 1.1: Positions and order to act Pre- and Postflop.

1.1.3 Hole Cards and Annotations

After blinds and antes are posted, each player is dealt two private hole cards from a 52
card deck. Single cards are usually annotated by a number or first letter representing the
rank (2 . . . 9, Ten, Jack, Queen, King, Ace), followed by the suit, e.g.: T♣ or Tc for the
Ten of Clubs.

During the Preflop betting round there are no community cards, so the 52C2 = 1326 hole
card combinations can be divided into 169 classes of strategically equivalent hands. For
instance, the hole card combinations of A♥K♦ and A♣K♠ are strategically equivalent
on the first street.

1.1.4 Betting Rounds

During each betting round, if there has been no previous bet in the current betting
round, the active player can either place a bet, or check to the next player. If there has
been a previous bet, players can either call by matching the current bet, raise the bet, or
surrender the chance to win the pot by folding their hole cards.

If a player uses all of their remaining chips to bet, raise or call, the player is declared
all-in. Players who are all-in remain active in the hand without matching further bets,
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1. Introduction

but they can only compete for the part of the pot that they matched. Any additional
bets that were unmatched by some of the all-in players are separated into side pots and
contested only among the players who fully matched the bets.

1.1.5 Hand Scoring

To score hands at showdown, each player remaining active in the hand combines his two
private hole cards with the five public community cards to build the best possible five
card hand. Table 1.2 gives a brief overview of the different ranks.

The pot is then awarded to the player with the highest five card hand. If multiple players
have the best hand of the exact same rank, this is called a split pot and the pot is
distributed equally among the tied players in this case.

Name Example
Royal Flush A♥ K♥ Q♥ J♥ T♥
Straight Flush 9♣ 8♣ 7♣ 6♣ 5♣
Four of a Kind 7♠ 7♥ 7♦ 7♣ K♠
Full House A♥ A♦ A♣ 2♠ 2♣
Flush K♠ 9♠ 8♠ 7♠ 4♠
Straight K♥ Q♦ J♣ T♣ 9♥
Three of a Kind Q♠ Q♥ Q♦ 7♦ 5♠
Two Pair 9♥ 9♣ 3♠ 3♦ K♣
One Pair 5♠ 5♦ K♣ 9♥ 8♠
High Card A♥ T♣ 9♣ 7♠ 2♥

Table 1.2: Five card hand ranks.

1.2 Tournament Poker
Poker games can be divided into the categories of cash or tournament games. In a cash
game, the poker chips have a fixed monetary value and players are free to quit the game
at any point and exchange their chips into cash. In this scenario, the game payoffs
correspond directly to the chip counts and are known at the end of every hand played. As
the chips in cash games are directly convertible, there is no strategical difference between
optimizing chip count and optimizing payoffs.

Tournament poker is different, in the sense that tournament chips do not have any direct
monetary value during the tournament, so they can not be converted back into cash.
The payoffs for a tournament game are defined by a payout structure R = (r1, r2, . . . , rn)
with ri ≥ ri+1, where ri is the prize for the player finishing the tournament in place i.

Upon entering a tournament, players receive a specified amount of chips and players are
eliminated from the tournament if they finish a hand with zero chips. The players receive
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1.3. Overview

their payoff according to the payout structure R when they are are either eliminated, or
there is only one remaining player left in the tournament.

For the remainder of this work, we will focus on a special subset of tournaments with a
relatively small number of entrants called Sit and Go (SNG) and more specifically Single
Table Tournament (STT).

STTs are a very popular tournament format in online poker and typically offered with
tournaments starting at 2, 6 or 9 players. The term SNG refers to the fact that these
games are usually offered “on demand” without a fixed time schedule. Players can register
at any time and a new game starts as soon as the target number of players is reached.

The main additional challenge for tournaments, compared to cash games, is that the
expected payoffs at the end of a tournament hand are not generally known or trivial to
estimate.

To demonstrate the general problem of estimating expected payoffs in tournament play,
consider an example tournament with a prize structure of R = (50$, 30$, 20$) to be
awarded to the players finishing in places 1. . . 3; players eliminated before this receive no
prize.

With four remaining players having chip stacks proportional to x ∝ (36, 4, 3, 2), player i1
controls 36/45 = 80% of the chips. The expected payoff for i1 can clearly not exceed the
50% of the prize pool for finishing in first place. On the flip side, the remaining three
players only control a total of (4 + 3 + 2)/45 = 20% of the chips and have a combined
expected payoff of the remaining > 50% of the prize pool.

It is obvious from this example that expected payoffs are not proportional to chip stacks.
This means that there can be considerable discrepancies between strategies that maximize
the expected chip count, and strategies maximizing the expected payoff.

Being able to estimate the expected payoffs for various chip configurations is an essential
prerequisite for making correct game decisions in poker tournaments. Equity models are
heuristics used to estimate payoffs in these situations, usually based only on the prize
structure of the tournament and the players’ chip stacks.

1.3 Overview
We provide a detailed description of the popular equity models in chapter 2, and discuss
state-of-the-art techniques for solving large stochastic games with imperfect information
in chapters 3 and 4.

In chapter 5, we explore the complexity of various game abstractions and select an
abstract tournament game setting that can be solved on our available hardware. Chapter
6 provides a brief discussion of the methods and parameters used for our calculations.

In the remainder of the work, we use the solution of this tournament game to evaluate
heuristics introduced in chapter 2. We compare the accuracy of payoff estimates in

5



1. Introduction

chapter 7, using the expected payoff values in the tournament solution as a reference.
The performance of strategy profiles based on the equity models is then evaluated in
chapter 8 against both against a theoretical worst case “nemesis” opponent, and against
the strategy profile calculated for the tournament solution. Chapter 9 concludes the work
and provides a summary of our findings.
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CHAPTER 2
Equity Models

In order to analyze poker tournaments at an individual hand level, without calculating
the entire tournament, heuristics are commonly used to approximate the expected payoffs
for players. These heuristics are called equity models in the poker community, with the
most popular one being the Malmuth-Harville model, also known as the Independent
Chip Model (ICM).

These models are typically much too complex for manual calculation. A variety of free
and commercial software tools and websites are available to apply these models to game
situations. Virtually, all of the software packages use Malmuth-Harville as the default
model. The only popular alternative in widespread use is an adversarial search extention
“FGS" that works on top of the Malmuth-Harville model. We will discuss this algorithm
in detail in section 4.2.

The models discussed in this section approximate the expected payoffs by estimating the
finishing distribution of players based on their chip stacks.

For a tournament with n players, the finishing distribution matrix P is an Rn×n matrix
where pi,j is the probability that player i finishes in place j. As these are probabilities,
all values in the matrix are non-negative and each row and column has a sum of 1. The
expected payoffs for each player can then be calculated by multiplying the player rows of
P with the payout vector R.

In a similar fashion to [CA06, ch.27], we will use the following notation:

• xi is the chip stack of a player i ∈ N

• Xi,j is the event of player i finishing the tournament in place j

• υ(x,R) is the vector of payoff estimates for a tournament state with chip stacks x
and a tournament payout structure R

7



2. Equity Models

2.1 Malmuth-Harville
The Malmuth-Harville model [Har73][CA06][GS08] is based on the following two assump-
tions:

1. The probability of a player i finishing in first place is proportional to the player’s
chip stack xi.

Pr(Xi,1) ∝ xi (2.1)

2. The conditional probability of player i finishing in place j, given that players a, b, . . .
finish in the first (j − 1) places, is proportional to the chip stacks of the remaining
players.

Pr(Xi,j |Xa,1 ∧Xb,2 ∧ . . . ) = xi∑
k/∈{a,b,...} xk

(2.2)

This model is commonly implemented by simply enumerating all possible elimination
sequences of the players. In this case, the runtime grows factorially with the number of
players O(n!) and is only practical for very low n.

2.1.1 Example

The finishing distribution matrix as estimated by the Malmuth-Harville heuristic PH for
chip stacks of x = [2, 5, 8, 13, 17] is shown below. The estimated payoffs υH for a payout
structure of R = [50, 30, 20, 0, 0] are also included.

PH(x) =


0.044 0.060 0.093 0.180 0.622
0.111 0.142 0.201 0.331 0.214
0.178 0.211 0.264 0.246 0.102
0.289 0.287 0.239 0.145 0.040
0.378 0.300 0.202 0.098 0.022


υH(x,R) = PH(x)×RT =

[
5.89 13.84 20.48 27.86 31.94

]
2.1.2 Improved Implementation

This brings us to the first contribution of this work, an optimized implementation of the
Malmuth-Harville heuristic which calculates the entire finishing distribution matrix in
O(n× 2n) by utilizing a 2n sized cache for memoization.

Instead of enumerating all elimination sequences, we enumerate the subsets of players
still in the tournament. While still exponential, it provides a considerable improvement
over the factorial runtime of the naive implementation.

In Malmuth-Harville players are removed from the remaining sub-calculation when they
finish in a certain spot. This means that the sub-calculation carried out following the

8



2.1. Malmuth-Harville

finish of players i and j in the first two places does not depend on the finishing order
between i and j. These sub-calculations can therefore be carried out in a combined step,
instead of individually.

In our improved implementation, we calculate the weight W for each subset of players
N ′ ⊆ N finishing in the first |N ′| places. We start by calculating the weight of each
subset with |N ′| = 1 using the original assumption 2.1. For subsets with |N ′| = 2, we
can then efficiently calculate the weights by re-using the |N ′| = 1 results and apply 2.2.
As we incrementally increase the size of the calculated subsets, the weight of each subset
can be calculated using the weights calculated during the previous iterations. Each step
uses the weights of the |N ′| subsets that can lead to the current N ′. For the calculation
of all 2n subsets, this leaves us with a total runtime complexity of O(n× 2n).

The weight cache W can be efficiently implemented as a simple array, indexed by a n-bit
integer representing the 2n subsets. An example implementation in Java is included in
listing A.1.

Algorithm 2.1: Optimized Malmuth-Harville “ICM”
Data: Chip stacks x1 . . . xn, Set of players N = {1 . . . n}

Result: Finishing distribution matrix P

1 Initialize P = Rn×n with pi,j = 0

2 Initialize W [N ′ ⊆ N ] =
{

1 if N ′ = ∅
0 else

3 for f = 1 . . . n do
4 foreach N ′ ⊆ N with |N ′| = f do
5 r =

∑
i 6∈N ′

xi

6 foreach i ∈ N ′ do
7 t = xi

r+xi
W [N ′ \ i]

8 pi,f ← pi,f + t

9 W [N ′]←W [N ′] + t

10 end

11 end

12 end

13 return P

9



2. Equity Models

2.2 Malmuth-Weitzman

Malmuth-Weitzman is a less popular variant of the ICM model discussed before. Using the
results from [CA06, p.337-339], the model can be stated as a similar set of assumptions:

1. The probability of a player being eliminated from the tournament next is inversely
proportional to the player’s chip stack.

2. The chips of an eliminated player are distributed evenly among the remaining
players.

This is conceptually a “bottom up” version of Malmuth-Harville. Instead of starting
by assigning the probabilities of finishing first and enumerating the sequences top-
down, Malmuth-Weitzman starts with the player to be eliminated next and works by
enumerating the sequences bottom-up to the first place. It is notable that by applying
these assumptions, 2.1 also holds true for Malmuth-Weitzman.

2.2.1 Example

We use PW to indicate the finishing distribution matrix as estimated by the Malmuth-
Weitzman heuristic and υW for the estimated payoffs. Both are displayed below using
the previous example of chip stacks x = [2, 5, 8, 13, 17] and a payout structure of R =
[50, 30, 20, 0, 0].

PW (x) =


0.044 0.071 0.124 0.240 0.520
0.111 0.159 0.228 0.294 0.208
0.178 0.223 0.257 0.212 0.130
0.289 0.277 0.212 0.142 0.080
0.378 0.269 0.179 0.112 0.061


υW (x,R) = PW (x)×RT =

[
6.84 14.89 20.73 26.99 30.56

]

2.2.2 Improved Implementation

As with Malmuth-Harville, a naive implementation will enumerate all elimination se-
quences and the runtime for calculating the finishing distribution matrix therefore grows
with O(n!).

With minor modifications, an optimized version similar to 2.1 can be used to reduce the
runtime to O(n× 2n). This again utilizes a cache of size 2n and, as in Malmuth-Harville,
relies on the property that the stacks used for the sub-calculation after the elimination

10



2.3. Roberts

of a set of players does not depend on the order of their elimination. An example
implementation in Java is also included in listing A.2.

Algorithm 2.2: Optimized Malmuth-Weitzman
Data: Chip stacks x1 . . . xn, Set of players N = {1 . . . n}

Result: Finishing distribution matrix P

1 Initialize P = Rn×n with pi,j = 0

2 Initialize W [N ′ ⊆ N ] =
{

1 if N ′ = N
0 else

3 for r = n . . . 1 do
4 foreach N ′ ⊆ N with |N ′| = r do
5 d = 1

r

∑
i 6∈N ′

xi

6 b =
∑
i∈N ′

1
xi+d

7 foreach i ∈ N ′ do
8 t = 1

b(xi+b)W [N ′]

9 pi,r ← pi,r + t

10 W [N ′ \ i]←W [N ′ \ i] + t

11 end

12 end

13 end

14 return P

2.3 Roberts
In [Rob11], Roberts introduces a new equity model that is claimed to provide more
accurate approximations. It is conceptually similar to Malmuth-Weitzman, but using a
slightly different set of assumptions:

1. The probability of a player being eliminated from the tournament next is assumed
to be:

Pr(Xi,n) ∝ 1
x2
i

∑
j 6=i

1
xj

(2.3)

2. The chips of an eliminated player are distributed inversely proportional to the chip
stacks of the remaining players.
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2. Equity Models

As with the previous two algorithms, a naive implementation of the Roberts heuristic
also has a runtime complexity of O(n!). Our optimization for the previous two algorithms
is not directly applicable in this case because of the way the chips are redistributed when
players are eliminated. When redistributing chips inversely proportional to the chip
stacks, the new stacks no longer depend solely on the set of removed players, but also on
the order of their elimination.

Fortunately, the same paper [Rob11] also provided an adapted version of this algorithm
with a considerably better runtime complexity of only O(n4) for the calculation of the
finishing distribution matrix.1 This adapted algorithm is an approximation and no longer
produces a finishing matrix with column and row sums of exactly 1.

We evaluated both the approximation and the full variant of the algorithm and found
that both variants perform essentially the same. For this reason, we have only included
the results for the full (non approximated) version in later chapters.

2.3.1 Example

The finishing distribution matrix PR and estimated payoffs υR for the Roberts heuristic
are shown below, using the same example of chip stacks x = [2, 5, 8, 13, 17] and R =
[50, 30, 20, 0, 0].

PR(x) =


0.044 0.049 0.073 0.144 0.690
0.111 0.124 0.191 0.392 0.182
0.178 0.197 0.290 0.256 0.078
0.289 0.301 0.252 0.127 0.031
0.378 0.329 0.194 0.081 0.019


υR(x,R) = PR(x)×RT =

[
5.16 13.09 20.61 28.51 32.63

]
2.4 Model Limitations
The equity models discussed in this chapter are taking only the absolute chip stacks and
payout structure as input variables. Besides these factors, actual payoffs in tournament
states also depend on the absolute and relative position of the chip stacks, as well as the
relative size of the chip stacks compared to the blinds.

A common example of this shortcoming is that single hand solutions based, on the models
discussed previously, will typically over-estimate the expected payoff for players in the
positions left of the blinds in the case of a fold; this results in too passive play.

The reason, is that, with few exceptions, the SB and BB positions are expected to lose
chips. When approximating payoffs only based on the chip stacks, without considering

1The paper states a runtime of O(n3), but this refers to the equity calculation for a single player, not
the entire matrix.
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2.4. Model Limitations

positions, this necessarily fails to take into account the loss of chips during the next hand
for the players about to enter the blind positions. As larger chip stacks tend to lose a
smaller fraction of their value in the blinds, there is an additional incentive for players to
increase their chip stacks before entering the blind positions.

Leaving aside positional issues, the Malmuth-Harville model is often claimed to under-
estimate expected payoffs for large chip stacks [Rob11]. We will see in chapter 7 that
this is indeed the case in our evaluation.
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CHAPTER 3
Single Hand Equilibrium

3.1 Nash Equilibrium
Nash equilibria are one of the standard solution concepts for multiplayer games. A set of
strategies is called a Nash equilibrium if, given perfect knowledge of the other players’
strategies and treating them as static, none of the players has an incentive to unilaterally
change their strategy. In other words, a Nash Equilibrium is a set of strategies where
each of the strategies is a best response against the other strategies.

For two player constant sum games, a Nash equilibrium is also the minimax solution and
comes with strong guarantees associated. For multiplayer games there are generally no
such strong guarantees.

Exact Nash equilibria are notoriously hard to find, especially so for big stochastic games.
Instead the concept of ε-Nash equilibria is widely used as an approximation.

A set of strategies is called an ε-Nash equilibrium iff no player can increase his expected
payoff by more than a fixed value ε when unilaterally deviating from their assigned
strategy.

3.2 Iterative ε-Nash Approximations
In the following sections we will describe some popular algorithms for approximating
ε-Nash equilibria. The discussed algorithms are all based on simulated self-play. In all
cases, the agents start out with an arbitrary strategy and then simulate play; making
incremental adjustments to their strategy profiles.

All three algorithms discussed in this section have memory requirements linear to the num-
ber of information sets (not game states). The algorithms traverse over the information
sets during each iteration and perform somewhat similar update procedures.
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3. Single Hand Equilibrium

3.3 Fictitious Play

Fictitious Play[Bro51] [FL98] is a popular learning model used to iteratively calculate an
ε-Nash Equilibrium. It uses a sequence of simulated games. In each iteration, each player
i uses a strategy profile that is a best response against the average of the previously
observed strategy profiles used by the other players.

The next strategy profile for player i is therefore:

σT+1
i = bi(σ̄T−i) (3.1)

Where:

• σ̄T−i is the average strategy profile for the other players for iterations 1 . . . T .

• bi(σ̄T−i) selects a best response for player i against σ̄T−i.

The Fictitious Play algorithm does not specify how the best response is selected, in case
multiple actions have the same utility. As explained below, it is generally beneficial for
performance to keep the number of actions with mixed strategies low, so that the best
response may be chosen with this in mind. Generally the specific selection function is
not particularly important in poker games, because it is a rather rare occurrence to have
multiple actions with exactly the same utility.

In its standard form, one of the problems with using Fictitious Play in poker is that
it results in profiles with a high number of mixed strategies. With Fictitious Play, if
an action was included in any of the σT profiles, the action will remain in the average
strategy profile σ̄ with a non-zero probability throughout the remaining calculation. This
leads to a large number of “almost pure” action profiles. We can see an example of this
in the strategy tables included in [GS08], which include a considerable number of entries
at 99% or 1%.

The runtime for evaluating a terminal node typically depends on the number of information
sets for each player that reach the node with non zero probability. The exact runtime
complexity is implementation dependent, and can often be considerably improved by
exploiting domain specific properties of the game structure. Some options for improving
the evaluation of terminal nodes in poker games are discussed in [JWBZ11].

Pure strategies are often beneficial to the evaluation performance, because whenever an
action is played with a pure strategy the information set will have a probability of zero
in some of the remaining game branches. For this reason, the tendency of Fictitious Play
to include a large number of mixed (“almost pure”) strategies typically has a negative
impact on evaluation speed.
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3.4. Counterfactual Regret Minimization

3.4 Counterfactual Regret Minimization
Counterfactual Regret Minimization (CFR) [Joh07][ZJBP08] is an iterative regret mini-
mization algorithm. The algorithm is somewhat similar to Fictitious Play in terms of
implementation. Both algorithms use the average strategy profile σ̄ played during the
iterations to find an ε-Nash equilibrium.

Beside storing the average strategy profile, CFR also maintains the cumulative counter-
factual regret values RTi (I, a) for every action a of player i in every information set I,
and uses these cumulative regrets to construct the current strategy profile for each player.
The counterfactual value υi(σ, I) for strategy profile σ in information set I is defined as:

υi(σ, I) = πσ−iui(σ, I) (3.2)

Where:

• πσ−i is the probability of reaching information set I when all players use strategy
profile σ, except that player i tries to reach information set I.

• The counterfactual utility ui(σ, I) is the expected utility for player i given that
information set I is reached and all players use the strategy profile σ, except that
player i plays to reach I.[Joh07] 1

The cumulative counterfactual regrets are then maintained by the following rule:

RTi (I, a) =
{
υi(σtI→a, I)− υi(σt, I) T = 1
0, RT−1

i (I, a) + υi(σtI→a, I)− υi(σt, I) T > 1 (3.3)

Where σI→a is a strategy profile identical to σ, except that player i plays action a in
information set I.

The strategy profile for the next iteration is constructed by setting the action probabilities
proportional to the positive counterfactual regret R+,T

i (I, a) = max
(
RTi (I, a), 0

)
if the

sum of R+,T
i is positive in that information set, and to a default setting otherwise:

σT+1(I)(a) =


∝ R+,T

i (I, a) if
∑
a∈A(I)R

+,T
i (I, a) > 0

1
|A(I)| otherwise

(3.4)

As in Fictitious Play, the final results of CFR have a tendency to include a large number
of “almost pure” strategies as in both cases the average strategy profile σ̄T is used.
However, in the case of CFR this does not have the same negative impact on runtime

1A more formal definition is provided in [JBL+12].
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3. Single Hand Equilibrium

because the averaged strategies are not used during the calculation process. The strategy
profiles used during the calculation are derived from the regret values and do not have
this tendency.

The original version of the algorithm, also referred to as “Vanilla” CFR, processes the
entire game tree in every iteration. In [JBL+12], Johanson et al. introduce several Monte
Carlo sampled variants of the algorithm that update only a fraction of the tree in every
iteration.

A notable disadvantage of CFR is the higher memory requirement. It generally requires
twice the memory compared to Fictitious Play, because the cumulative regrets need to
be stored in addition to the averaged strategy profiles.

3.5 CFR+

CFR+ uses a slightly different update rule compared to CFR and, instead, maintains the
cumulative counterfactual regret+ R+,T

i (I, a). The only difference to CFR is that the
values use a lower cap of zero. The modified update rules as provided in [Tam14]:

R+,T
i (I, a) =

{
max

{
0, υi(σtI→a, I)− υi(σt, I)

}
T = 1

max
{

0, R+,T−1
i (I, a) + υi(σtI→a, I)− υi(σt, I)

}
T > 1 (3.5)

The construction of the strategy profile for the next iteration σT+1 then uses these
R+,T
i (I, a) values in rule 3.4.

The authors observed that, when using this modified rule, the current strategy profile σT
will itself converge to an ε-Nash equilibrium, so storing the averaged strategy profile may
no longer be required.

This results in one of the most important improvements of the algorithm: the reduced
memory requirements compared to CFR. There is the immediate improvement in memory
requirements from not storing the averaged profiles, which brings the basic requirements
down to the level of Fictitious Play. The new updating rule also results in a considerable
percentage of the stored regret values being exactly zero, and compression techniques
can be used to further decrease the memory requirements.

For complex games, CFR+ was observed to converge in a magnitude fewer iterations
overall. The authors suspect that this is due to the absence of “regret buildup”. In
CFR negative regret can be accumulated and even once an action becomes part of the
best response again, it can take several iterations before the action re-enters the current
strategy profile because the cumulated negative regret first needs to be compensated
before a positive value is reached. In CFR+ the regret values use a floor of zero, which
results in a more dynamic sequence of strategy profiles.

18



CHAPTER 4
Tournament Equilibrium

In chapter 2, we discussed models to approximate the expected payoffs for players based
on their chip stacks. In order to evaluate the accuracy of these models, we will now
explore methods to calculate the actual payoffs for some tournament games.

In the simplest case a tournament state is defined by the vector of chip stacks, but it
can also include additional tournament state information. In real tournament games, the
blinds are usually escalated by a predetermined schedule. In such cases the tournament
state would also need to include the current blind level, and time or number of hands
until the next blind increase. We will assume a constant blind level for the remainder of
this work and identify tournament states by the vector of chip stacks.

The two main algorithms, VI-FP and PI-FP, are extensions of the Fictitious Play
algorithm discussed in chapter 3. They use Fictitious Play as part of an inner loop,
to calculate equilibrium approximations individually for each tournament state while
assuming fixed payoffs for the other states. In the global outer loop, the state payoffs are
then updated to reflect the new strategies.

An important restriction of both algorithms is that they need to calculate all tournament
states, so game abstractions need to be used to restrict the total number of states.
Both the complexity and the abstraction requirements make the algorithms somewhat
impractical to apply in end-user software.

The Future Game Simulation (FGS) algorithm is an adversarial search with close similari-
ties to the VI-FP algorithm. Unlike the other two algorithms, FGS is not actually suitable
for calculating a full tournament solution, but it can provide single-hand calculations of
improved accuracy compared to the use of plain equity models discussed in chapter 2.
FGS generally does not require the calculation of all tournament states, which makes it
more practical for end-users.
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4. Tournament Equilibrium

In their standard forms, all algorithms in this chapter apply Fictitious Play from section
3.3 to calculate ε-Nash equilibria for individual hands. This only reflects the fact
that Fictitious Play is more established than the newer regret minimizing alternatives;
Fictitious Play can be substituted by any of the ε-Nash algorithms from chapter 3.

4.1 VI-FP

In [GS08], Ganzfried/Sandholm introduce an algorithm to calculate approximate Nash
equilibria for poker tournaments. It uses a modified value iteration algorithm where
Fictitious Play is used in an inner loop to calculate the single hand equilibria.

In the inner loop beginning at line 5 in algorithm 4.1, VI-FP uses Fictitious Play (or
an alternative different algorithm from chapter 3) to calculate an ε-Nash equilibrium for
every tournament state, assuming static payoffs V i for the other states.

Once the inner loop is complete, the static payoffs are updated at line 9 by calculating
the expected payoff of each tournament state, under the assumption that players use the
ε-Nash strategies of the inner loop and still using the previous payoffs V i−1 as the value
for all other states. This process is repeated until the maximum deviation between V i

and V i−1 is lower than the tournament goal δ.

Even if VI-FP converges, it is not generally guaranteed to be in a Nash equilibrium.
An example is provided in [GS09] where the V 0 payoffs are initialized optimistically for
all players, which leads to single hand strategies in the first inner loop that cause an
infinitely repeated game.

We would like to point out that, when initializing with any of the equity models from
chapter 2, the sum of the initial payoffs in a state with n players will be equal to the sum
of rewards R for these places

∑n
i=1 υi =

∑n
i=1 ri. The payoff sum is therefore correct in

the initialization, and this property is preserved during the outer loop updates of VI-FP.
When using a sensible initialization method, it is not possible to arrive at optimistic
payoff estimates for all players in any tournament state. It is not clear whether or not
the algorithm may converge in non-equilibrium states at any rate.

The same paper [GS09] also introduces an ex post equilibrium check to evaluate whether
a strategy profile constitutes an ε-Nash equilibrium. This check can be used to verify the
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4.2. Future Game Simulation

quality of VI-FP results after the strategy calculation.

Algorithm 4.1: VI-FP [GS08]
Data: Fictitious Play goal γ, Tournament goal δ

Result: Tournament strategy σ

1 V 0 = initializePayoffV alues();

2 i = 0;

3 repeat
4 σ ← initializeStrategies();

5 repeat
6 σ ← fictP lay(V i);

7 until maxRegret(σ) ≤ γ;

8 i← i+ 1;

9 V i ← getNewV alues(V i−1, σ);

10 until maxDev(V i, V i−1) ≤ δ;

11 return σ;

4.2 Future Game Simulation

FGS is a popular extension to improve the equity estimates of the equity models discussed
in chapter 2. It is an adversarial search; essentially an adaptation of the expectiminimax
[Mic66, p.183-200] algorithm for poker tournaments.

The general concept is similar to the minimax search used for games such as chess, where
a number of future moves are calculated and, at the deepest level, a heuristic evaluation
is used to estimate the expectation in the remainder of the game.

Similarly, in FGS the tournament states reachable within a specified number of hands are
calculated, and at the deepest level, one of the equity models mentioned before, typically
Malmuth-Harville, is used to approximate the expected payoff for the remainder of the
tournament.

The main difference between FGS and other adversarial searches, such as expectiminimax,
is that each depth level in the FGS calculation represents an entire hand of poker
with decisions by multiple players. Because of the imperfect information during hands,
expectiminimax can not be used directly to calculate the player actions. Instead, FGS
calculates an ε-Nash equilibrium for each hand and uses the resulting strategy profile to
determine the transition probabilities to the next level.
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4. Tournament Equilibrium

It is notable that a plain implementation of FGS is actually equivalent to the VI-FP
algorithm 4.1, when Malmuth-Harville is used as initialization and a fixed count of outer
iterations is used instead of VI-FP’s δ goal. This outer iteration count corresponds to
the depth parameter d in FGS.

The practical difference between the methods is that VI-FP requires a game abstraction
that limits the total number of tournament states. This is usually achieved by selecting a
suitable starting state where all chip stacks are multiples of a SB, along with a modification
of the showdown rules regarding split pots to ensure that chip stacks remain multiples
of a SB throughout the entire abstract tournament. An example for a suitable game
abstraction is discussed in section 5.3.5.

FGS only calculates the tournament states that are reachable from an arbitrary starting
state within the search limit specified by the depth parameter d, so it is not necessary
to restrict the overall number of tournament states. However, the number of reachable
tournament states without tiebreakers will typically increase exponentially with the depth
limit and, therefore, only relatively small limits are used in practice, most commonly in
the range of 1-5 rounds.

Algorithm 4.2: Future Game Simulation “FGS”
Data: Chip stacks x, Fictitious Play goal γ, Depth d

Result: Payoff estimates υd(x)

1 if d = 0 then
2 υ0(x)←MalmuthHarville(x);

3 return υ0(x);

4 else
5 forall the x′ successor of x do
6 υd−1(x′)← FGS(x′, γ, d− 1);

7 end

8 σ(x)d−1 ← initializeStrategies();

9 repeat
10 σ(x)d−1 ← fictP lay(υd−1, σ(x)d−1);

11 until maxRegret(υd−1, σ(x)d−1) ≤ γ;

12 υd(x)← getNewV alue(x, υd−1, σ(x)d−1)

13 return υd(x);

14 end
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4.2.1 Common Variants

The transition probability from x→ x′ is typically very low if the state x′ can only be
reached from x as a result of split pots. If no tiebreaker rule is used, these low-probability
branches may be terminated by FGS implementations before the full depth limit is reached
and their payoffs replaced by the heuristic equity model estimates. This optimization
alone results in a reduction of the branching factor of approximately 50% in popular
game abstractions, with the exact figure depending on the player count.

A second common simplification is the use of a restricted strategy space for the Fictitious
Play calculations carried out as part of FGS. This option is discussed in more detail in
section 5.4.

4.3 PI-FP

The PI-FP [GS09] algorithm is a follow up to the VI-FP version, based on the policy
iteration algorithm [Put05]. Compared to VI-FP it uses a modified outer loop to update
the payoffs.

In the outer loop update of PI-FP, the transition matrix based on the current strategies
is built and the resulting linear system is solved to find the updated state payoffs. If
there are multiple solutions, the minimal non-negative solution is selected.

The updated payoffs in the outer loop are only dependent on the current strategy profile,
not on previously assigned payoff values. This means that, unlike VI-FP, the PI-FP
variant can recover from poor initialization and is guaranteed to be in a Nash equilibrium
if the algorithm converges.

Payoffs may still be initialized by one of the equity models from chapter 2 for the first
inner loop, but compared to VI-FP initialization, is much less important.

Neither VI-FP nor PI-FP define how the strategies are initialized as part of the ini-
tializeStrategies() step. In practice it is advisable to initialize with the last iteration’s
strategies. After a few outer iterations, the payoff updates are usually relatively small
and initializing with the previous strategies can drastically reduce the runtime compared
to a random initialization.

With the relatively recent publication of CFR+, there is now a promising ε-Nash algorithm
available that does not require the use of an averaged strategy. As discussed in section
3.5, this results in a more dynamic series of strategy profiles, and if used as an inner-loop
replacement of Fictitious Play we suspect that CFR+ can cope with the payoff updates
of the outer loop without a reset of the regret values.1

1As a result of their averaged nature, the solutions of Fictitious Play and CFR can not change rapidly
in later iterations, so they would likely require an adjustment or reset to work with the outer loop payoff
updates.
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4. Tournament Equilibrium

We will use a variant of PI-VP based on this idea to calculate the tournament solution,
the algorithm being outlined in chapter 6.

Algorithm 4.3: PI-FP [GS09]
Data: Chip stacks x, Fictitious Play goal γ, Tournament goal δ

Result: Tournament strategy σ

1 V 0 = initializePayoffV alues();

2 i = 0;

3 repeat
4 σ = initializeStrategies();

5 repeat
6 σ = fictP lay(V i);

7 until maxRegret(σ) ≤ γ;

8 i = i+ 1;

9 M i = createTransitionMatrix(σ);

10 V i = evaluatePolicy(M i);

11 until maxDev(V i, V i−1) ≤ δ;

12 return Si;
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CHAPTER 5
Game Abstraction

5.1 Jam/Fold Play

The two-player Limit Hold’em poker variant was recently “weakly solved” by Johannson
et al in early 2015, using only lossless abstractions.[BBJT15] Even after exploiting
symmetries in the game, two-player Fixed Limit Hold’em has 1.38× 1013 information
sets. Uncompressed, this game requires 262TB of storage for storing the solution, although
this can be reduced to 11TB after utilizing compression techniques.

The No Limit Hold’em (NLHE) variant of poker is several orders of magnitude more
complex. Even for a two player game, solving a NLHE game without abstractions is
considered solidly out of reach for the foreseeable future. The current work on NLHE
uses restrictive lossy abstractions to deal with the complexity.

For tournament games, a popular abstraction is to limit the set of actions available to
the players to either jam (go all-in) or fold. Fortunately, tournament settings often deal
with a relatively low ratio of chip stacks to blinds so this is not likely a large mistake.

In Mathematics of Poker [CA06], Chen/Akenman argue that jam/fold play is likely
optimal for stack sizes up to roughly 7×BB and a reasonable approximation up to
around 10×BB. It is, however, worth noting that their argument is based on chip values
and ignores tournament considerations. For human play, a wide variety of tournament
learning material generally recommends the use of jam/fold strategies up to chip stacks
of approximately 10×BB.

5.2 Ganzfried/Sandholm Three Player Game

We will first look into the abstract game that Ganzfried/Sandholm used in [GS08] and
[GS09] and then determine additional simplifications to allow more than 3 players.
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5. Game Abstraction

Their game was based on the end game of 9-player STTs on PokerStars1. These games
start with 9 players and 1500 chips per player and use a payout structure of 50% for 1st,
30% for 2nd and 20% for 3rd place. For the sake of simplicity they assumed a total prize
pool of 100$.

In the original PokerStars game format, the blind levels are escalated by a fixed time
schedule. In the abstract game, a fixed blind level of SB=300 and BB=600 was used.
Additionally, the game used a tiebreaker rule so split pots would be avoided. The
significance of the tiebreaker rule is that it drastically reduces the possible tournament
states when using jam/fold play, and has a starting state where all players have stacks
that are full multiples of a SB. This ensures that player stacks remain multiples of a SB
for the entire tournament and effectively leaves us with 13500/300 = 45 stack units that
cannot be broken down in the abstract game.

As shown in table 5.3, this results in a total of 946 different tournament states for 3 players
and 45 stack units. It is well known that winning probabilities for the two player game
are approximately proportional to the players’ chip stacks. For this reason, [GS08] and
[GS09] only calculated the three player tournament states and used the approximation
above to estimate the payoffs for the two player states.

5.3 Complexity Considerations

One essential implementation detail that enables us to efficiently calculate three player
hands is the use of a pre-calculated lookup table that provides the result probabilities for
all possible hand matchups. The technique is described in some detail in [GS08].

When two or more players choose to go all-in, the community cards are dealt and there is
a showdown to determine which player wins the pot. For three players there are a total
of 6 private hole cards removed from the deck before dealing the board, which leaves
us with a total of 46C5 = 1,370,754 board run-outs. Even using highly optimized hand
evaluators, enumerating this on-the-fly would be several magnitudes too slow in practice.

Instead of enumerating these boards on-the-fly during the calculation, a pre-calculated
lookup table is used that stores the outcome probabilities for every possible matchup
of hole cards. Since there are no community cards when players make their decisions
in the jam/fold game, the card suits are entirely symmetrical and we can reduce the
52C2 = 1,326 hole card combinations into 169 strategically distinct preflop hand classes.

5.3.1 Rollout Size

When adjusting the game rules for additional players, we first need to decide whether it is
feasible to use a bigger lookup table to account for all matchups, or if other abstractions
should be considered that enable us to keep working with the three player lookup table.

1PokerStars is the biggest provider of online poker as of 2015, http://www.pokerstars.com
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5.3. Complexity Considerations

Ignoring split pots, there are n! possible results for every hand matchup. The number
of naive matchups is 169n, but it is not necessary to calculate the full number as many
matchups are isomorphic. We can restrict the calculation to cases of H1 ≥ H2 ≥ · · · ≥ Hn,
where each of the Hi is one of the 169 Preflop classes. The order of hand classes can be
defined arbitrarily as it is only used for indexing the lookup table. Table 5.1 provides an
overview of the lookup size depending on the number of indexed players.

Players Results Matchups Entries
2 2 14,365 28,730
3 6 818,805 4,912,830
4 24 35,208,615 845,006,760
5 120 1,218,218,079 146,186,169,480

Table 5.1: Size of the rollout lookup depending on players.

When calculating Nash equilibria for single hand scenarios, the vast majority of runtime
is spent calculating these outcome frequencies, and it is essential for performance that the
lookups be held in RAM. Apart from the memory requirements, the worst case runtime
for calculating the combined frequencies also grows exponentially by 169n with the
number of players (in practice, the runtime degrades even more because of the increased
percentage of cache misses as the lookup table grows).

Using 8-byte doubles for each of the entries, the 4-player lookup table seems borderline
feasible at 6.3GB, but at 1.1TB the 5-player lookup is clearly out of question with our
available hardware.

Using a 4-player lookup would generally restrict the calculations to four players due to
the additional complexity per hand. The alternative is to use the much smaller 3-player
lookup table with 37.5MB, similar to [GS08] and select a game abstraction that avoids
the requirement of a 4+ player lookup table. This option appeared more appealing, as it
considerably softens the complexity growth per hand when adding players and therefore
opens the possibility to calculate the game for more than four players.

5.3.2 Rollout Abstraction

Due to the considerations discussed in the previous section, we now have to introduce
additional restrictions on the game when adding more players, so the game can be
calculated with a lookup table for no more than three players. The following abstraction
is commonly used in commercial poker analysis software.

The adjusted rules for this abstract game are as follows:

1. Once three players are all-in, all remaining players are forced to fold

2. Players receive their hole cards from the deck the first time they act during the
hand
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5. Game Abstraction

3. If players fold, their hole cards are re-shuffled into the deck before action continues

This restricts the maximum number of active players to three, and once that number is
reached all remaining players are forced to fold. Shuffling folded hole cards back into the
deck is necessary to avoid the requirement of a bigger lookup table, otherwise folded hole
cards also need to be taken into account when calculating the outcome frequencies.

It is notable that this abstraction makes our 3-player hands slightly different from the
ones in the original 3-player game of [GS08] and [GS09]. In our game abstraction, the
subgame after a player folds is independent of the hole cards dealt to the folded player
because the cards are shuffled back into the deck before the rest of the hand continues.
In the real game, folded hole cards influence the distribution of outcome frequencies.

The effect of folded cards on the remainder of the hand is referred to as “card bunching”
in the poker community. It is assumed to be negligible when the number of folded players
is low. For this reason, we still expect our three player results to closely match the ones
produced by Ganzfried/Sandholm.

5.3.3 Complexity of Single Hand Calculation

We now take a look at complexity of single hand calculations when using the rules outlined
so far. Table 5.2 shows how the number of decision points scales with the number of
players in a jam/fold game where no more than three active players are allowed.

Players 1-Way 2-Way 3-Way Total
2 1 1 0 2
3 2 3 1 6
4 3 6 4 13
5 4 10 10 24
6 5 15 20 40
7 6 21 35 62
8 7 28 56 91
9 8 36 84 128

10 9 45 120 174

Table 5.2: Decision nodes in jam/fold games with ≤ 3 active players.

For hands with more than three players, a large majority of the runtime is spent calculating
the 3-way result frequencies, in our implementation typically in excess of > 95%. For
this reason, we will use the number of 3-way decision points as a rough approximation of
the complexity when estimating the overall tournament complexity in the next section.
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5.3. Complexity Considerations

5.3.4 Tournament States

The number of tournament states is dependent upon both the number of players and the
total number stack units to be distributed among players. The original Ganzfried/Sand-
holm game used 45 units, each corresponding to 1 SB, and used a tiebreaker rule for split
pots to ensure these units are not broken up. Table 5.3 shows the number of tournament
states depending on the number of units and players. As a reference we also included the
number of states without a tiebreaker rule.

Table 5.3 shows the number of tournament states for a specific player count, not including
the subgames with lower player counts. The column with 45 units corresponds to the
original Ganzfried/Sandholm 3-player game with an SB of 300; the 90 units version is for
a SB of 150. For reference, purposes we also included the number of tournament states
for 13, 500 total chips when no tiebreaker rule is used.

Players 45 Units 90 Units No Tiebreaker
2 4.40× 101 8.90× 101 1.35× 104

3 9.46× 102 3.92× 103 9.11× 107

4 1.32× 104 1.14× 105 4.10× 1011

5 1.36× 105 2.44× 106 1.38× 1015

6 1.09× 106 4.15× 107 3.73× 1018

7 7.06× 106 5.81× 108 8.39× 1021

8 3.83× 107 6.89× 109 1.62× 1025

9 1.77× 108 7.06× 1010 2.73× 1028

Table 5.3: Tournament states for various games.

Table 5.4 shows the total number of tournament states for the 45 unit game when
starting with the specified player count, this time including states with fewer players.
The approximated complexity is based on the total number of 3-way decision nodes in
the tournament. The feasible limit to run the calculations within the allocated time and
hardware restricts us to at most 5 players, around 1, 500 times the calculation complexity
of the original 3-player tournament game used in [GS08] [GS09]. A further increase to 6
players would result in an additional complexity growth of several magnitudes.2

5.3.5 Tiebreaker Rule

By standard game rules, if multiple players have the strongest hand of the exact same
rank at showdown, the pot is distributed equally among these players. This can result in
the breaking down of SB units into smaller fractions for example, when a pot with an
uneven number of SBs is tied by two players.

2A game variant with 6 players and 45 stack units is also unappealing because the game has no
natural starting state, whereas the 5 player game can start with equal stacks of 9 units per player.
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5. Game Abstraction

Players Total States Complexity
3 990 1
4 14,234 57
5 149,985 1,492
6 1,235,993 24,452
7 8,295,045 285,622
8 46,615,613 2,554,070
9 223,848,240 18,291,428

Table 5.4: Tournament complexity for the 45 unit game.

Using a tiebreaker rule is essential to restrict the number of tournament states to chip
configurations where all chip stacks are multiples of a SB. In the event of a tied pot in
the abstract game, we break ties between winning hands at random.

5.4 Restricting Strategy Space

A popular abstraction used in tournament analysis software is to further restrict the
strategy space of jam/fold games by applying a “hand ranking”.

A hand ranking is a fixed order of the 169 Preflop hand classes; the “Sklansky-Chubukov”
ranking [Skl99] is a common example. When restricting the strategy space by a hand
ranking, players are only allowed to choose a strategy s with 0 ≤ s ≤ 169 to play exactly
the top s hands of the hand ranking.

This reduces the strategy space of every decision node to 170 pure strategies, in comparison
to the 2169 pure strategies available in the unrestricted game.

The improvement regarding performance results mainly from the reduced complexity of
the terminal node evaluations. Using the unrestricted strategy space, terminal nodes for
n players typically have a worst case runtime of O(169n) because the individual hand
matchups from the rollout table need to be combined to get the evaluation for the selected
strategies.

In the handranking restricted game, all strategy evaluations can be pre-calculated so the
terminal node evaluation has constant runtime O(1) for a single lookup. In the restricted
game, the size of this strategy lookup table is identical to the size of the lookup for
individual hands we discussed earlier in table 5.1.

It is well known that this abstraction is lossy, regardless of the choice of the hand ranking.
As shown for instance in [CA06] and [GS08], there exists no single correct ranking of the
Preflop hand classes.

The abstraction is popular for applications where the actual hand selection is not
particularly important, for instance, as part of a FGS implementation from chapter 4.2.
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5.5. Abstraction Summary

In this case, only the payoff estimates are relevant and the actual strategies are usually
discarded after the calculation.

We chose to not use this abstraction for the remainder of this work and allow the full
strategy space for better accuracy.

5.5 Abstraction Summary
Our tournament setting is essentially a variation of the 3 player jam/fold tournament
game used in the Ganzfried/Sandholm papers. We also use 45 SB units to be distributed
among players, mimicking the 300/600 blind level with 13,500 total chips, as seen in
9-player PokerStars STTs. A tiebreaker rule is used to handle split pots, which results in
a total of 149,985 tournament states.

The total of 45 SBs (22.5 BBs) results in average chip stacks between 4.5− 11.25 BBs.
This is a range where jam/fold is thought to be a reasonable approximation of optimal
play[GS08][CA06].

For the reward structure we keep R = (50$, 30$, 20$) for the first three places, making
the total prize pool 100$.

To make the terminal node evaluation reasonably efficient, we restrict the number of
active players to a maximum of three, and use slightly modified rules regarding card
dealing to avoid card bunching effects in our abstract game. These settings result in a
game with a total of 5.8× 108 information sets.
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CHAPTER 6
Calculation Overview

6.1 Single Hand Strategies
For the calculation of single hand strategies, we chose to use CFR+ 3.5. A big factor
for this decision was that the algorithm appears to work well if payoffs are updated at
some point in the calculation. This will be important in our case, especially for the full
tournament calculation and for FGS calculations. Instead of entirely re-calculating the
hand strategies whenever the payoffs update, we chose to keep the cumulative regrets
and simply continue the calculation. This works without any adjustments when using
CFR+, when applied to Fictitious Play or “Vanilla" CFR, some reset of the calculation
would be necessary as the averaged nature of these algorithms would otherwise prevent
fast adjustments of strategies after payoff updates.

We used a target of ε = 0.0001$ (equivalent to 0.0001% of the total prize pool) for all of
the single hand equilibrium calculations; both for individual calculations using equity
models, and also as the γ goal for the inner loop of the tournament calculation. This
is considerably tighter than the ε = 0.001$ limit used in the original 3-player jam/fold
paper [GS08].

6.2 Full Tournament Calculation
For the full tournament solution, we essentially used the PI-FP algorithm with some
minor modifications. Most importantly, we decided to use CFR+ instead of Fictitious
Play for the inner loop calculation, and kept the inner loop regrets stored between outer
loop updates. Inner loop updates are only carried out on states that are exploitable by
at least γ after the outer loop update. If a state still meets the γ target, no inner loop
updates are performed and the strategies of this state remain unchanged. This version
of the algorithm converges when no inner loop updates are required after an outer loop
update. We will refer to this variant as PI-CFR+ for the rest of this work.
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6. Calculation Overview

We also chose to calculate the tournament incrementally. We started with states for
≤ 3 players at first, and, once these reached the desired δ, we added the 4 and then 5
player states. As the subgame with ≤ 3 players does not depend on the strategies in
the 4 and 5 player states, the payoffs and strategies for these states remain unchanged
during the calculation of the 4 and 5 player states. Thus we reduce the total changes
in payoffs during the outer loops for the calculation of the much slower 4 and 5 player
calculation. We expect this incremental calculation to result in a minor reduction of the
overall runtime, compared to a direct calculation of all states.

6.3 FGS
As the game abstraction already limits the number of tournament states, we used VI-
CFR+, with a fixed number of outer loops, initialized by Malmuth-Harville, to calculate
the FGS results. It is important to note that none of the common FGS optimizations
discussed in 4.2 were used. The split pot optimization is obsolete in our game abstraction
because of the tiebreaker rule, and further restriction of the strategy space was not
necessary due to the already limited number of tournament states.

The PI-CFR+ version discussed above is of course much more efficient for calculating
a tournament equilibrium; in fact, it converged to a much closer approximation of the
tournament equilibrium in a fraction of the total runtime for 10 rounds of VI-CFR+ .

Our interest with FGS is not to fully solve the tournament in this setting, but to evaluate
if and by how much a calculation with fixed outer loops improves the equity estimates.
As already discussed in section 4.2, unlike the VI/PI algorithms, a fixed-depth FGS
calculation can be carried out quite efficiently and on modest hardware from an arbitrary
starting state, even with many players and/or the absence of a tiebreaker rule.
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CHAPTER 7
Equity Comparison

7.1 Deviation Statistics
This chapter provides a comparison of the equity estimates from various models, compared
with the state payoffs from the PI-CFR+ calculation. We frequently use the Mean
Absolute Percentage Deviation (MAPD) as an evaluation metric, because we expect
relative deviations to be a better estimator of game performance than absolute deviations.
Our rationale is that game decisions are made based on differences between expected
payoffs, and an estimation error is more likely to impact the strategies if it is a larger
percentage of the overall payoff.

Table 7.1 shows a summary of the relative and absolute deviations. Out of the three
"plain" equity models, Malmuth-Harville has the lowest overall MAPD at 7.2% with
Roberts at 8.2%. We can also see that, while the gap between the two models is much
smaller for the Mean Absolute Deviation (MAD), Malmuth-Harville and Roberts are
almost identical at 1.04$ and 1.05$ respectively, indicating that the Malmuth-Harville
model has lower average deviations for smaller stack sizes and Roberts is more accurate
for bigger stacks. The Malmuth-Weitzman heuristic performs considerably worse than
the other two models, with a MAPD of 9.87% and a MAD of 1.53$.

Looking at the FGS statistics, it is notable that even at depth 1 there is already a
considerable reduction of the MAPD by more than a quarter compared to plain Malmuth-
Harville, down to 5.3%. FGS depth 3, which is still practical for most end-user settings,
reduces the MAPD by more than half to 3.47%.

7.2 Position Averaged Analysis
The Malmuth-Harville, Malmuth-Weitzman and Roberts models all strictly consider
the distribution of chips for their estimates, but not the relative or absolute position of
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7. Equity Comparison

Relative Deviation [%] Deviation [$]
MAPD Min Max MAD Min Max

Harville 7.20 −53.8 78.8 1.04 −8.59 10.55
Weitzman 9.87 −46.9 84.7 1.53 −7.61 9.88
Roberts 8.19 −59.3 81.6 1.05 −9.69 11.09

FGS-1 5.30 −40.4 66.6 0.83 −7.32 9.62
FGS-2 4.13 −37.2 61.6 0.66 −6.29 7.51
FGS-3 3.47 −33.4 51.6 0.54 −4.52 5.50
FGS-4 2.85 −31.6 38.8 0.42 −4.46 3.95
FGS-5 2.24 −31.0 25.8 0.34 −3.79 4.11
FGS-6 1.78 −29.7 23.9 0.27 −3.15 2.73
FGS-7 1.46 −21.8 18.8 0.22 −2.71 2.21
FGS-8 1.23 −19.8 21.8 0.18 −2.41 2.49
FGS-9 1.00 −21.4 14.7 0.15 −1.85 1.73
FGS-10 0.84 −15.1 12.2 0.13 −1.41 1.23

Table 7.1: Equity statistics summary

the players. To gain an understanding of the part of the deviations accounted for by
positioning, we will evaluate the model estimates in a position neutral setting.

We do this by averaging over all positional permutations of a given chip configuration.
For instance, given a state (5, 10, 30), we do not directly use the calculated payoffs for
this particular state, but instead use the averaged payoffs for the respective stacks over
all the permutations, {(5, 10, 30), (5, 30, 10), (10, 5, 30), (10, 30, 5), (30, 5, 10), (30, 10, 5)}.

Table 7.2 shows the updated table based on these position averaged payoffs. The MAPD
is reduced between 2 and 3 percentage points, with positions accounting between 25.2%
(Roberts) and 38.9% (Harville) of the original MAPD values in table 7.1. Also notable is
the drastic reduction of the minimum and maximum values.

Figure 7.1 shows the expected payoff for a given chip stack in the PI-CFR+ solution,
averaged over all tournament states. As mentioned earlier, we fully calculated the
two player state instead of estimating the payoffs, by assuming winning probabilities
proportional to the chip stacks as in [GS08] [GS09].

As we can see in the figure, the two player payoffs follow the linear approximation very
closely as expected. The largest deviation from this approximation is at state x = {8, 37},
with the payoff for the player in the SB position under-estimated by 0.045$.

Figure 7.2 shows the difference of mean payoffs of the various models against the PI-CFR+

solution for 5 player tournament states. It is notable that, even in the position-neutral
setting, there is some obvious bias of the models. Even more surprisingly, all models
follow a very similar pattern when plotted in this way. The plot supports that the
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7.2. Position Averaged Analysis

Relative Deviation [%] Deviation [$]
MAPD Min Max MAD Min Max

Harville 4.40 −21.9 13.7 0.68 −2.36 2.24
Weitzman 7.38 −11.0 25.2 1.30 −4.41 2.79
Roberts 5.94 −44.5 15.7 0.71 −3.00 2.69

FGS-1 2.64 −7.5 7.1 0.50 −2.06 1.28
FGS-2 1.98 −4.0 8.2 0.38 −1.74 1.22
FGS-3 1.43 −4.1 6.3 0.27 −1.35 0.91
FGS-4 0.89 −6.2 4.7 0.18 −0.92 1.05
FGS-5 0.58 −3.6 2.5 0.12 −0.63 0.56
FGS-6 0.45 −3.7 2.2 0.09 −0.46 0.44
FGS-7 0.29 −3.6 1.3 0.06 −0.32 0.30
FGS-8 0.25 −3.6 1.2 0.05 −0.33 0.25
FGS-9 0.19 −2.4 0.7 0.03 −0.23 0.17
FGS-10 0.14 −2.1 0.6 0.03 −0.16 0.14

Table 7.2: Equity statistics summary, position averaged
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Figure 7.1: Mean payoffs in the PI-CFR+ solution.

37



7. Equity Comparison

0 10 20 30 40

−
3

−
2

−
1

0
1

2

Chips [Small Blinds]

D
iff

er
en

ce
 o

f M
ea

ns
 [$

]

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

● ● ● ● ● ● ● ●
●

●
●

●
●

●

●

●

●

●

●

●

Harville
Weizman
Roberts

Figure 7.2: Difference of mean payoffs for 5-player states.

Malmuth-Weitzman model provides the poorest estimates of these three models and
likely should not be used in practice.

When comparing the Malmuth-Harville and Roberts models, we can see that Roberts has
a smaller bias for relatively big stacks, but performs slightly worse than Malmuth-Harville
with middle stacks, around 10 to 15 SBs, and considerably worse with very small stacks.
Interestingly, all three models systematically under-estimate the payoffs of big chip stacks.

It is notable that this general pattern is also consistent over the three 7.4 and four player
7.3 plots. We omitted the two player plot, as all models estimate the winning changes as
proportional to the chip stacks in the two player setting, so their estimates are identical
and extremely close to the PI-CFR+ solution.

We observe that the bias pattern applies consistently for three, four and five player
tournament states. These are considered to be quite different tournament scenarios. At
four players we have the cut-off for the first paid placement, which results in notoriously
high non-linearity between expected chips and expected payoffs. (This situation is
referred to as “the money bubble” in the poker community.) We can see the quite drastic
difference in 7.1 between three and four players, but despite this difference, the general
bias pattern remains very consistent.
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7.2. Position Averaged Analysis
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Figure 7.3: Difference of mean payoffs for 4-player states.
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Figure 7.4: Difference of mean payoffs for 3-player states.
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7. Equity Comparison

7.3 Finishing Probabilities
In this section, we will discuss the average finishing probabilities for players in the
PI-CFR+ solution depending on their chip stacks. We can calculate these probabilities
by running the payoff update step discussed in the PI-FP section 4.3 on our strategies,
using reward structures of {(1, 0, 0, 0, 0), (0, 1, 0, 0, 0), . . . , (0, 0, 0, 0, 1)}. The resulting
payoffs for these structures are equivalent to the probability of finishing in 1st, 2nd and
so on down to 5th place.

The values listed below show the finishing probabilities in the PI-CFR+ solution for
the example used throughout chapter 2 with chip stacks of x = [2, 5, 8, 13, 17], averaged
over the 5! positional permutations of x. We use PP̄ I to refer to these position-averaged
finishing probabilities in the PI-CFR+ solution.

PP̄ I(x) =


0.047 0.061 0.092 0.218 0.582
0.105 0.131 0.187 0.322 0.255
0.166 0.204 0.273 0.245 0.112
0.283 0.298 0.253 0.130 0.036
0.398 0.306 0.195 0.084 0.016


υP̄ I(x,R) = PP̄ I(x)×RT =

[
6.04 12.9 19.89 28.15 33.02

]
All models in chapter 2 assume that the winning probability for players is proportional
to their chip stacks. When comparing the winning probabilities in the first column of the
matrix above with the calculations for the other models, we observe that the winning
probabilities in our solution do not match this assumption. We will discuss this in more
detail in the next section.

In tables 7.3, 7.4, 7.5 we provide the average finishing probabilities for our solution,
depending on the size of the players’ chip stacks in SBs. It is important to keep in mind
that these are the average values over all tournament states. The exact probabilities can
vary significantly depending on the positions and the distribution of the remaining chips
among the other players.
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7.3. Finishing Probabilities

SB 1.[%] 2.[%] 3.[%] 4.[%] 5.[%] SB 1.[%] 2.[%] 3.[%] 4.[%] 5.[%]
1 2.50 5.28 11.08 27.99 53.15 26 63.24 28.11 7.39 1.18 0.07
2 4.28 8.28 15.34 28.51 43.59 27 65.73 26.94 6.36 0.92 0.05
3 6.22 11.09 17.72 28.04 36.92 28 68.18 25.69 5.40 0.70 0.04
4 7.99 13.44 20.63 27.43 30.52 29 70.63 24.29 4.54 0.52 0.02
5 9.97 15.82 22.60 27.05 24.56 30 72.95 22.90 3.76 0.38 0.02

6 12.12 18.18 23.99 26.01 19.70 31 75.27 21.38 3.07 0.27 0.01
7 14.24 20.31 25.48 24.17 15.81 32 77.48 19.87 2.45 0.19 0.01
8 16.49 22.36 26.14 22.28 12.73 33 79.60 18.34 1.93 0.13 0.00
9 18.77 24.25 26.48 20.30 10.20 34 81.64 16.80 1.48 0.08 0.00
10 21.04 26.07 26.65 18.22 8.01 35 83.60 15.24 1.11 0.05 0.00

11 23.43 27.61 26.29 16.32 6.35 36 85.40 13.76 0.81 0.03 0.00
12 25.86 29.04 25.70 14.44 4.97 37 87.16 12.24 0.58 0.02 0.00
13 28.37 30.20 24.81 12.72 3.90 38 88.75 10.85 0.39 0.01 0.00
14 31.00 31.12 23.64 11.20 3.05 39 90.01 9.72 0.26 0.00 0.00
15 33.69 31.77 22.32 9.82 2.39 40 91.43 8.41 0.16 0.00 0.00

16 36.42 32.24 20.93 8.55 1.85 41 92.50 7.41 0.08 0.00 0.00
17 39.21 32.47 19.49 7.41 1.42
18 41.98 32.59 18.04 6.32 1.07
19 44.77 32.49 16.61 5.34 0.79
20 47.55 32.27 15.18 4.44 0.57

21 50.30 31.89 13.77 3.64 0.40
22 53.01 31.37 12.38 2.95 0.29
23 55.62 30.76 11.03 2.38 0.21
24 58.18 30.05 9.73 1.89 0.15
25 60.73 29.13 8.53 1.51 0.11

Table 7.3: Average finishing probabilities for 5-player states
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7. Equity Comparison

SB 1.[%] 2.[%] 3.[%] 4.[%] SB 1.[%] 2.[%] 3.[%] 4.[%]
1 2.21 7.08 21.75 68.97 26 62.55 29.82 6.94 0.70
2 3.98 11.09 26.61 58.31 27 65.03 28.52 5.91 0.54
3 6.00 14.58 28.22 51.21 28 67.44 27.18 4.99 0.39
4 7.36 17.01 32.75 42.88 29 69.86 25.69 4.16 0.28
5 9.41 19.92 33.35 37.33 30 72.26 24.10 3.44 0.20

6 11.59 22.54 33.57 32.30 31 74.62 22.48 2.76 0.14
7 13.65 24.89 34.12 27.34 32 76.92 20.80 2.19 0.09
8 15.97 26.96 33.54 23.53 33 79.21 19.03 1.70 0.06
9 18.28 28.81 32.68 20.23 34 81.32 17.36 1.29 0.03
10 20.57 30.50 31.77 17.16 35 83.34 15.69 0.95 0.02

11 22.97 31.83 30.39 14.81 36 85.06 14.21 0.72 0.01
12 25.40 32.96 28.94 12.69 37 86.84 12.65 0.51 0.01
13 27.92 33.87 27.30 10.91 38 88.27 11.36 0.36 0.00
14 30.55 34.46 25.56 9.43 39 90.06 9.70 0.24 0.00
15 33.23 34.86 23.74 8.17 40 91.35 8.51 0.14 0.00

16 35.93 35.08 22.02 6.97 41 92.85 7.08 0.07 0.00
17 38.67 35.15 20.25 5.93 42 94.04 5.92 0.03 0.00
18 41.44 35.04 18.57 4.95
19 44.20 34.93 16.85 4.02
20 46.96 34.62 15.21 3.20

21 49.76 34.09 13.62 2.54
22 52.52 33.38 12.13 1.97
23 55.11 32.71 10.65 1.53
24 57.61 31.88 9.32 1.20
25 60.09 30.93 8.06 0.92

Table 7.4: Average finishing probabilities for 4-player states
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7.3. Finishing Probabilities

SB 1.[%] 2.[%] 3.[%] SB 1.[%] 2.[%] 3.[%]
1 2.26 14.78 82.96 26 58.70 34.68 6.62
2 4.20 20.94 74.85 27 61.03 33.22 5.75
3 6.31 24.96 68.73 28 63.37 31.84 4.79
4 8.18 29.47 62.35 29 65.71 30.16 4.13
5 10.34 31.77 57.89 30 68.04 28.59 3.37

6 12.49 34.40 53.11 31 70.41 26.73 2.86
7 14.66 36.42 48.91 32 72.73 25.03 2.24
8 16.94 38.06 44.99 33 75.07 23.12 1.81
9 19.24 38.89 41.87 34 77.33 21.28 1.38
10 21.50 40.11 38.39 35 79.74 19.19 1.07

11 23.81 40.43 35.75 36 82.04 17.22 0.74
12 26.10 41.10 32.80 37 84.49 14.99 0.53
13 28.39 41.07 30.54 38 86.71 12.97 0.32
14 30.68 41.36 27.96 39 88.63 11.15 0.22
15 33.02 40.50 26.48 40 90.72 9.17 0.11

16 35.31 40.89 23.81 41 92.55 7.39 0.06
17 37.63 40.34 22.03 42 94.28 5.70 0.02
18 39.95 40.14 19.91 43 95.86 4.14 0.00
19 42.29 39.58 18.12
20 44.62 39.42 15.96

21 46.98 38.92 14.10
22 49.33 38.87 11.80
23 51.77 37.54 10.68
24 54.09 36.88 9.03
25 56.40 35.74 7.86

Table 7.5: Average finishing probabilities for 3-player states
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7. Equity Comparison

7.4 Winning Probability

We observed in the previous section that the average winning probabilities in our solution
are not proportional to the chip stacks. Figure 7.5 shows the average winning probabilities
in the PI-CFR+ solution by player count and chip stack. As we already mentioned earlier,
the assumption of winning probabilities proportional to the chip stacks only holds true
for tournament states with two players. For states with more than two players, there are
some clear deviations.

The foundation for the assumption of proportional winning probabilities is the model of
a random walk, where an infinitely small amount of chips is repeatedly re-distributed
randomly, and players are removed from the game when left with zero chips[Rob11]. The
core idea of this model is that chip movements are entirely random.

In the poker community, it is widely accepted that this is generally not the case for
tournament play in situations with high non-linearity between chip-stacks and tournament
equity, such as the 4-player payoff “bubble1” in our game setting.

Correct strategy for players with small stack sizes is very risk averse in this scenario,
as staying in the tournament generally has priority over the accumulation of additional

1This refers to the tournament situation before a guaranteed payoff is reached. In our game we have
rewards of R = (50$, 30$, 20$) for the first three places, so the player eliminated in 4th place is the last
one with a payoff of zero.
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Figure 7.5: Winning probabilities in the PI-CFR+ solution.
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7.5. Absolute Payoff Deviation
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Figure 7.6: Relative difference between PI-CFR+ winning probabilities and the linear approxi-
mation.

chips. This situation benefits players with large chip stacks, who can employ a very
aggressive strategy to force their risk averse opponents out of pots.2

Figure 7.6 shows the relative signed deviation of the PI-CFR+ winning percentages from
the linear approximation. The biggest relative deviation can be seen at a stack size of
4 SBs and 4 remaining players. The winning percentage in the PI-CFR+ solution in
this case is 7.36%, which is 17.2% lower than predicted by the linear approximation
(4/45 = 8.89%).

7.5 Absolute Payoff Deviation
Figures 7.2, 7.3, 7.4 from section 7.2 show the difference in mean payoffs and provide a
good overview of model bias depending on the stack size, but it is important to remember
that positive and negative errors in the estimates cancel each other out in these figures.
They are therefore not a good measure for the overall accuracy of the estimates.

For reference we also provide figures 7.7, 7.8, 7.9, showing the mean absolute deviation
between the model estimates and the payoff values in the PI-CFR+ solution over all
tournament states.

2This scenario is of considerable importance for human players when learning correct tournament
play. The concept is widely known as “abusing the bubble” in the poker community.

45
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Figure 7.7: Mean Absolute Deviation for 5-player states.
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7.5. Absolute Payoff Deviation
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CHAPTER 8
Strategy Evaluation

Aside from the statistical analysis of the equity estimates in the last chapter, it is also
interesting to analyze the difference in game performance between strategy profiles
depending on the equity model used to create them.

In this chapter, we will first compare the performance of the strategies against a theoretical
worst case “nemesis” opponent. In the second part, we will run tournament simulations
for players using different strategy profiles.

8.1 Equilibrium Quality
We used the ex post check algorithm, described in [GS09], to calculate ε and evaluate
how well each of the strategy sets approximates a Nash equilibrium. For the PI-CFR+

strategy profile, we found that starting in a random position of the starting state
xStart = (9, 9, 9, 9, 9), a worst case opponent can increase his expected payoff by no more
than an average of 0.0003$ throughout the remainder of the tournament.

This is equivalent to an increase of ROI = 0.0015%1 from the 20.0$ baseline. Over
all states we get a maximum of ε = 0.00043$ with a mean value of 0.00021$. So the
PI-CFR+ strategy set is indeed a very close Nash equilibrium approximation for our
abstract tournament game.

Table 8.1 shows the same statistics for the other calculated models. The win-rate of a
nemesis player in the starting state is considerably lower against the Roberts strategies
(ROI = 2.19%) than against the Malmuth-Harville ones (ROI = 4.32%).

The results are similar for the average improvement of a nemesis player placed in a
random tournament state, at ε = 0.262$ for Roberts and ε = 0.375$ for Malmuth-Harville.

1Return On Investment (ROI) is a popular performance evaluator for poker tournaments. For the
calculation we assume each player contributes 1/5th of the 100$ prize pool, so we use ROI = payoff−20$

20$ .
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8. Strategy Evaluation

Start State Global
ROI[%] Mean[$] Max[$] Mean[$] Max[$]

Harville 4.32 0.864 1.069 0.375 3.802
Weitzman 15.20 3.040 3.527 1.288 4.897
Roberts 2.19 0.438 0.547 0.262 5.431

FGS-1 1.91 0.382 0.458 0.194 2.414
FGS-2 1.34 0.269 0.291 0.148 1.210
FGS-3 0.99 0.197 0.268 0.088 1.614
FGS-4 0.62 0.124 0.148 0.054 1.005
FGS-5 0.36 0.071 0.091 0.037 0.921
FGS-6 0.25 0.050 0.058 0.027 0.665
FGS-7 0.19 0.037 0.043 0.017 0.432
FGS-8 0.12 0.024 0.028 0.013 0.425
FGS-9 0.09 0.018 0.026 0.009 0.299
FGS-10 0.05 0.009 0.010 0.005 0.161

Table 8.1: ex post results summary

Malmuth-Weitzman is a distant third in both metrics, at ROI = 15.2% for the starting
state and a global mean of ε = 1.288$.

Surprisingly, Roberts has a small percentage of big outliers and has the largest maximum
ε = 5.431$ among the models, even higher than Malmuth-Weitzman at ε = 4.897$.
This only concerns a very small fraction of states, however; Roberts has lower ε than
Malmuth-Harville up to and including the 99th percentile.

8.2 Tournament Simulation
To determine the performance of two strategy profiles against each other, we decided to
run Monte Carlo simulations of tournaments according to the rules of the abstract game,
with players acting according to the different strategy profiles.

This approach is considerably easier to implement and much more flexible regarding
the game settings that can be evaluated, compared to an adjustment of the tournament
calculation.

Similar simulations were performed by a collaboration of tournament software developers2

including this author. Results of two independent simulations indicated that strategies
based on the Roberts model lose at approximately 1) ROI = −0.36% and 2) ROI =
−0.18% against the Malmuth-Harville Model. The strategies for these simulations were
calculated on-the-fly with a restricted strategy space as discussed in 5.4. As this is

2Discussions and results regarding these preliminary simulations can be found on the Poker Theory
forum of Two Plus Two Publishing: http://forumserver.twoplustwo.com/15/poker-theory/
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8.3. Simulation Results

a relatively slow process, the sample sizes ranged between 105 - 106 tournaments per
simulation.

Taking advantage of the limited number of tournament states in our abstract game,
we can pre-calculate the strategies for the entire tournament. This means there are no
expensive strategy calculations necessary during the Monte Carlo simulation, so the
sample size can be increased by several magnitudes.

With on-the-fly calculations of the strategies, it took several seconds to simulate a single
tournament for the old simulations, even using the restricted strategy space discussed
in section 5.4. After pre-calculating the approximately 150,000 tournament states, our
implementation is able to simulate around 500,000 tournaments per second.

We used an implementation of the Well44497b [PLM06] pseudorandom number generator
to generate the random numbers required to deal cards, randomize decisions and apply
the tiebreaker rule during the simulation.

8.3 Simulation Results

The tables in the following sections show the simulation results for one player using the
single hand equilibrium strategies based on a specified equity model, simulated against
the other players using the PI-CFR+ strategies. Table 8.2 shows a summary of the
simulation results.

Model ROI[%] 1st[%] 2nd[%] 3rd[%] 4th[%] 5th[%]
Harville −0.998 18.49 20.43 22.13 20.59 18.36
Weitzman −2.665 16.93 20.52 24.22 21.18 17.15
Roberts −0.988 18.81 20.36 21.44 20.03 19.35

Table 8.2: Simulation summary for standard equity models

The tables are based on a 1× 109 tournament sample for each of the starting positions,
so a total of 5× 109 simulated tournaments per equity model. The standard deviation
for the mean payoffs over a positional sample of 1× 109 tournaments is in the order of
±0.0006$.

We can see from tables 8.3 and 8.5 that the performance of the single hand strategies based
on Malmuth-Harville and Roberts against the PI-CFR+ solution, is virtually identical at
approximately −1.0% of the baseline payoffs. The Malmuth-Weitzman strategies in 8.4
perform considerably worse at −2.7%.

Among all three models, there is a common trend of finishing considerably less often
than the “fair” 20% in the 1st and 5th places. This indicates that strategies based on
these models are too risk averse. This is consistent with our earlier observation in 7.2
that all three models considerably under-estimate the expected value of large chip stacks.
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8. Strategy Evaluation

Start Payoff[$] 1st[%] 2nd[%] 3rd[%] 4th[%] 5th[%]
HJ 19.585 18.21 20.21 22.08 20.47 19.03
CO 20.215 18.96 20.85 22.39 20.41 17.39
BU 21.232 19.84 22.09 23.43 19.63 15.01
SB 20.286 18.89 20.93 22.81 20.29 17.08
BB 17.683 16.56 18.06 19.92 22.15 23.31

Avg. 19.800 18.49 20.43 22.13 20.59 18.36

Table 8.3: Simulation details for Malmuth-Harville

Start Payoff[$] 1st[%] 2nd[%] 3rd[%] 4th[%] 5th[%]
HJ 19.274 16.66 20.36 24.18 21.00 17.80
CO 19.899 17.50 20.96 24.31 20.46 16.77
BU 20.932 18.49 22.20 25.15 19.38 14.78
SB 19.970 17.35 21.02 24.96 20.45 16.22
BB 17.262 14.67 18.08 22.51 24.60 20.14

Avg. 19.467 16.93 20.52 24.22 21.18 17.15

Table 8.4: Simulation details for Malmuth-Weitzman

Start Payoff[$] 1st[%] 2nd[%] 3rd[%] 4th[%] 5th[%]
HJ 19.582 18.57 20.11 21.31 19.83 20.18
CO 20.211 19.23 20.79 21.80 20.16 18.02
BU 21.223 20.02 22.02 23.03 19.55 15.37
SB 20.285 19.14 20.88 22.24 20.07 17.66
BB 17.711 17.09 18.01 18.82 20.56 25.53

Avg. 19.802 18.81 20.36 21.44 20.03 19.35

Table 8.5: Simulation details for Roberts
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8.3. Simulation Results

8.3.1 Direct Matches

In the simulations discussed so far, we had a single player using the tested strategy
playing against the remaining opponents using the PI-CFR+ strategy.

Since Malmuth-Harville and Roberts performed similarly in our evaluation so far, we
decided to also run a direct simulation of these two strategy sets against each other.

We simulated 1× 108 tournaments for each seating configuration in the starting state
xStart = (9, 9, 9, 9, 9). With two models we have 30 seating configurations3 and get a
total sample size of 3× 109 simulated tournaments.

The results are shown in table 8.6. We can see that the Roberts model indeed values big
stacks slightly higher and is less risk averse, resulting in the higher finishing percentages
for first and fifth places. Interestingly the models are essentially breaking even against
each other, Malmuth-Harville having a barely positive ROI of +0.009%.

Our result is in considerable contrast to the results of the preliminary simulations
mentioned earlier, where Malmuth-Harville had an observed ROI in the order of +1%
against Roberts. This preliminary simulation used a much smaller sample size, restricted
strategy spaces and a slightly different tournament model with an increasing blind
structure. We suspect the different payout structure of R = (65$, 35$) to be the most
important factor for the differing results.

We used the same procedure to simulate Malmuth-Harville against Malmuth-Weitzman
and Roberts against Malmuth-Weitzman; these results are also shown in table 8.6. The
Malmuth-Weitzman strategy set loses at a considerable rate in both cases, with Malmuth-
Harville having a slightly better ROI = 1.057% compared to an ROI = 0.956% for
Roberts.

Matchup ROI[%] 1st[%] 2nd[%] 3rd[%] 4th[%] 5th[%]
Harville 0.009 19.88 20.00 20.29 20.34 19.48
Roberts −0.009 20.12 20.00 19.71 19.66 20.52

Harville 1.057 20.90 19.95 18.88 19.57 20.70
Weitzman −1.057 19.10 20.05 21.12 20.43 19.30

Roberts 0.956 20.94 19.97 18.64 19.27 21.17
Weitzman −0.956 19.06 20.03 21.36 20.73 18.83

Table 8.6: Simulation results for direct matches

3A total of 25 = 32 ways to assign one of the two strategy sets to each of the players, minus the two
configurations which have all players using the same strategy set.
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8.3.2 FGS Simulation

Table 8.7 shows a summary of the simulation results for FGS based strategies with
varying depth levels against the PI-CFR+ strategy set. The detailed results are included
in appendix B. Similar to the ex post results earlier, we observe that FGS provides a
considerable improvement over the results of Malmuth-Harville against PI-CFR+ (see
table 8.2), even with a low depth parameter.

Calculations at depth 2−3 are feasible for “on-the-fly” analysis even on moderate hardware,
and provide strategies that reduce Malmuth-Harville’s negative ROI of −1% by about
half, to −0.526% and −0.475% respectively, in our game setting. It is noteworthy that
the ROI of the PI-CFR+ solution against FGS strategy decreases almost monotonially
with increasing depth parameter, with FGS-6 to FGS-7 being the only exception.

This relatively steady convergence is not shared by the finishing probabilities and the
underlying strategies. This can be observed, for instance, in the finishing percentage for
1st or 5th place in table 8.7, these percentages move back and forth considerably as the
depth increases4.

Model ROI[%] 1st[%] 2nd[%] 3rd[%] 4th[%] 5th[%]
FGS-1 −0.695 19.03 20.31 21.25 20.68 18.72
FGS-2 −0.526 19.56 20.05 20.50 20.18 19.71
FGS-3 −0.475 19.79 20.00 20.05 20.02 20.14
FGS-4 −0.269 19.66 20.11 20.41 20.08 19.74
FGS-5 −0.178 19.72 20.05 20.46 20.25 19.53
FGS-6 −0.119 19.93 20.03 20.01 20.08 19.95
FGS-7 −0.126 20.02 20.01 19.81 19.93 20.23
FGS-8 −0.060 19.89 20.03 20.18 19.99 19.91
FGS-9 −0.039 19.94 20.03 20.08 19.99 19.96
FGS-10 −0.023 20.02 20.00 19.93 19.98 20.07

Table 8.7: Simulation summary for FGS

4We reiterate that the sampling error for the simulations is essentially negligible because of the big
sample size. With a sample of 5 × 109 simulated tournaments for each entry of table 8.7 the standard
deviation for the mean finishing percentages is in the order of ±0.00057 percentage points in this case.
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CHAPTER 9
Conclusion

9.1 Summary

In this thesis we have discussed popular heuristics for estimating payoffs in poker
tournaments and state-of-the-art methods such as CFR+ and PI-FP for solving large
stochastic games of imperfect information. We have also provided improved algorithms
for calculating the Malmuth-Harville and Malmuth-Weitzman heuristics, reducing the
runtime complexity from O(n!) to O(n× 2n) by utilization of a 2n sized cache.

Using these methods, we calculated a Nash equilibrium approximation for a jam/fold
tournament abstraction with 149,985 tournament states and 5.8× 108 information sets,
finding a set of strategies that is exploitable by no more than ε = 0.00043% of the
prize pool in any tournament state. This is to our knowledge the biggest tournament
abstraction ever calculated in this way.

Using the payoffs of this tournament solution as a reference, we then evaluated the
accuracy of popular heuristics. One of our most important findings is that the Malmuth-
Harville and Roberts heuristics both considerably underestimate payoffs for large chip
stacks. In the case of Malmuth-Harville this was already relatively well known, but the
Roberts model was explicitly designed in an attempt to address this shortcoming. It is an
interesting result that Roberts also shares this tendency, although to a reduced extent.

In the statistical evaluation of model estimates against the PI-CFR+ payoffs, the de
facto standard Malmuth-Harville outperformed Roberts consistently across all evaluated
metrics. The Malmuth-Weitzman model performed considerably worse than the other
two models and should, in our opinion, be disregarded for practical applications.

We also found that an assumption shared by all heuristic models, winning probabilities
being proportional to chip stacks, does not hold true in our game setting. This is the
case even after we account for positional factors. We speculate that this higher-than-
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proportional winning percentage for large chip stacks may account for a considerable
part of the bias in the payoff estimates.

Positional factors appear to contribute around 2− 3 percentage points to the MAPD of
the estimates. This value can serve as a rough estimate of the lower bound achievable by
an equity model working without positional information.

Results for our ex post evaluation showed that a worst case opponent can win at
ROI = 4.32% against Malmuth-Harville based strategies and only 2.19% against Roberts.
These values are on the lower range of our expectations, and Roberts substantially
outperforming Malmuth-Harville is especially surprising considering our earlier results in
the statistical evaluation.

In terms of simulation results, our findings are in line with preliminary simulations,
with the exception of the strategies based on the Roberts model. These do perform
better than indicated by previous simulations and are essentially break-even in a direct
matchup against Malmuth-Harville, with both models losing at an almost identical rate
of approximately ROI = −1.0% against the PI-CFR+ strategy set. Considering our
simulation results and the the ex post evaluation, the Roberts heuristic does look like a
viable alternative for practical use.

Evaluation of strategies based on the FGS algorithm found a substantial improvement over
the standard heuristics, even when using relatively low values for the depth parameter.
The accuracy appears to increase consistently with the depth parameter.

9.2 Restrictions and Further Work
It is important to keep in mind that our evaluation results are based on a specific
tournament game. Most importantly, although the distribution of payouts as R =
(50%, 30%, 20%) is very popular in STT games, there are several other payout structures
in widespread use. It is not clear if our results are specific to this particular payoff
structure or if our findings apply to a broader setting. Additional evaluations using other
payoff structures would be interesting to provide clarification.

Regarding the FGS findings, it should be noted that we used a variant of VI-CFR+ to
calculate the FGS strategy sets. This is equivalent to FGS with an unrestricted strategy
space, while most publicly available implementations of FGS use restricted strategy
spaces to speed up the calculation. For this reason, the results may not be entirely
representative of these implementations. We do not expect a large difference in results,
but FGS with a restricted strategy space should be considered for future evaluations.

We provided a detailed analysis about the shortcomings of the current heuristics. Hope-
fully, this information, along with the provided PI-CFR+ finishing probabilities for our
game, will prove useful in the development of more accurate models.
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APPENDIX A
Java Listings

1 /**
2 * @param x chip stack for each player
3 * @return finishing distribution matrix P
4 */
5 public static double[][] getHarvilleMatrixFast(double[] x){
6
7 double[][] p = new double[x.length][x.length];
8 double[] w = new double[(0x1 << (x.length))];
9 w[0] = 1;

10
11 double r, t;
12 for (int f = 1; f <= x.length; f++)
13 for (int ns = 1; ns < w.length; ns++)
14 if (Integer.bitCount(ns) == f) {
15 r = 0;
16 for (int i = 0; i < x.length; i++)
17 if (((0x1 << i) & ns) == 0)
18 r += x[i];
19 for (int i = 0; i < x.length; i++)
20 if (((0x1 << i) & ns) != 0) {
21 t = x[i] / (x[i] + r) * w[ns ^ (0x1 << i)];
22 p[i][f - 1] += t;
23 w[ns] += t;
24 }
25 }
26
27 return p;
28 }

Listing A.1: Minimalistic Java implementation of our O(n×2n) Malmuth-Harville variant,
corresponding to algorithm 2.1
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1 /**
2 * @param x chip stack for each player
3 * @return finishing distribution matrix P
4 */
5 public static double[][] getWeitzmanMatrixFast(double[] x){
6
7 double[][] p = new double[x.length][x.length];
8 double[] w = new double[(0x1 << (x.length))];
9 w[w.length - 1] = 1;

10
11 double d, t, b;
12 for (int r = x.length; r > 0; r--)
13 for (int ns = 0; ns < w.length; ns++)
14 if (Integer.bitCount(ns) == r) {
15 d = 0;
16 for (int i = 0; i < x.length; i++)
17 if (((0x1 << i) & ns) == 0)
18 d += x[i];
19 d /= r;
20
21 b = 0;
22 for (int i = 0; i < x.length; i++)
23 if (((0x1 << i) & ns) != 0)
24 b += 1.0 / (x[i] + d);
25
26 for (int i = 0; i < x.length; i++)
27 if (((0x1 << i) & ns) != 0) {
28 t = 1.0 / (b * (x[i] + d)) * w[ns];
29 p[r - 1][i] += t;
30 w[ns ^ (0x1 << i)] += t;
31 }
32 }
33
34 return p;
35 }

Listing A.2: Minimalistic Java implementation of our O(n × 2n) Malmuth-Weitzman
variant, corresponding to algorithm 2.2
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APPENDIX B
Detailed FGS Results

Start Payoff[$] 1st[%] 2nd[%] 3rd[%] 4th[%] 5th[%]
HJ 19.646 18.88 20.04 20.96 19.98 20.14
CO 20.278 19.64 20.67 21.28 20.18 18.23
BU 21.290 20.38 21.99 22.51 20.18 14.93
SB 20.341 19.17 20.91 22.42 21.20 16.31
BB 17.751 17.09 17.96 19.08 21.86 24.01

Avg. 19.861 19.03 20.31 21.25 20.68 18.72

Table B.01: Simulation details for FGS-1

Start Payoff[$] 1st[%] 2nd[%] 3rd[%] 4th[%] 5th[%]
HJ 19.673 19.31 19.79 20.40 19.81 20.69
CO 20.312 20.26 20.35 20.39 19.20 19.81
BU 21.324 21.01 21.67 21.57 19.53 16.21
SB 20.379 19.70 20.68 21.62 20.77 17.22
BB 17.786 17.52 17.75 18.50 21.59 24.64

Avg. 19.895 19.56 20.05 20.50 20.18 19.71

Table B.02: Simulation details for FGS-2

59



B. Detailed FGS Results

Start Payoff[$] 1st[%] 2nd[%] 3rd[%] 4th[%] 5th[%]
HJ 19.682 19.42 19.79 20.18 20.27 20.34
CO 20.319 20.41 20.34 20.07 19.24 19.95
BU 21.334 21.38 21.53 20.94 18.89 17.27
SB 20.391 20.07 20.57 20.93 20.09 18.34
BB 17.799 17.69 17.76 18.14 21.60 24.82

Avg. 19.905 19.79 20.00 20.05 20.02 20.14

Table B.03: Simulation details for FGS-3

Start Payoff[$] 1st[%] 2nd[%] 3rd[%] 4th[%] 5th[%]
HJ 19.725 19.37 19.89 20.37 20.05 20.32
CO 20.361 20.20 20.50 20.57 19.93 18.81
BU 21.376 21.11 21.69 21.57 19.39 16.24
SB 20.430 20.03 20.62 21.16 19.90 18.30
BB 17.838 17.61 17.87 18.38 21.12 25.03

Avg. 19.946 19.66 20.11 20.41 20.08 19.74

Table B.04: Simulation details for FGS-4

Start Payoff[$] 1st[%] 2nd[%] 3rd[%] 4th[%] 5th[%]
HJ 19.742 19.47 19.79 20.36 19.88 20.50
CO 20.378 20.31 20.39 20.52 19.92 18.86
BU 21.389 21.08 21.68 21.74 20.07 15.44
SB 20.447 19.89 20.64 21.55 20.74 17.18
BB 17.866 17.85 17.73 18.12 20.64 25.67

Avg. 19.964 19.72 20.05 20.46 20.25 19.53

Table B.05: Simulation details for FGS-5

Start Payoff[$] 1st[%] 2nd[%] 3rd[%] 4th[%] 5th[%]
HJ 19.751 19.66 19.77 19.95 19.75 20.86
CO 20.389 20.47 20.40 20.17 19.71 19.25
BU 21.403 21.38 21.64 21.12 19.68 16.19
SB 20.462 20.12 20.63 21.06 20.66 17.53
BB 17.876 18.03 17.71 17.73 20.60 25.93

Avg. 19.976 19.93 20.03 20.01 20.08 19.95

Table B.06: Simulation details for FGS-6

60



Start Payoff[$] 1st[%] 2nd[%] 3rd[%] 4th[%] 5th[%]
HJ 19.750 19.65 19.80 19.92 20.11 20.52
CO 20.387 20.55 20.39 19.97 19.50 19.59
BU 21.401 21.50 21.59 20.87 19.29 16.75
SB 20.459 20.31 20.56 20.67 20.10 18.36
BB 17.877 18.09 17.71 17.60 20.65 25.95

Avg. 19.975 20.02 20.01 19.81 19.93 20.23

Table B.07: Simulation details for FGS-7

Start Payoff[$] 1st[%] 2nd[%] 3rd[%] 4th[%] 5th[%]
HJ 19.764 19.61 19.79 20.12 19.90 20.58
CO 20.399 20.42 20.41 20.34 19.85 18.99
BU 21.414 21.30 21.63 21.37 19.57 16.13
SB 20.472 20.15 20.58 21.12 20.09 18.06
BB 17.891 17.95 17.75 17.94 20.54 25.81

Avg. 19.988 19.89 20.03 20.18 19.99 19.91

Table B.08: Simulation details for FGS-8

Start Payoff[$] 1st[%] 2nd[%] 3rd[%] 4th[%] 5th[%]
HJ 19.767 19.67 19.77 20.00 19.71 20.84
CO 20.406 20.51 20.39 20.17 19.70 19.23
BU 21.419 21.35 21.64 21.27 19.76 15.99
SB 20.475 20.14 20.59 21.12 20.37 17.77
BB 17.894 18.01 17.73 17.84 20.42 26.00

Avg. 19.992 19.94 20.03 20.08 19.99 19.96

Table B.09: Simulation details for FGS-9

Start Payoff[$] 1st[%] 2nd[%] 3rd[%] 4th[%] 5th[%]
HJ 19.770 19.73 19.76 19.88 19.74 20.89
CO 20.409 20.58 20.37 20.05 19.68 19.33
BU 21.421 21.49 21.59 20.99 19.54 16.38
SB 20.480 20.19 20.59 21.02 20.50 17.69
BB 17.897 18.09 17.70 17.70 20.43 26.08

Avg. 19.995 20.02 20.00 19.93 19.98 20.07

Table B.010: Simulation details for FGS-10

61





List of Figures

7.1 Mean payoffs in the PI-CFR+ solution. . . . . . . . . . . . . . . . . . . . . . . . 37
7.2 Difference of mean payoffs for 5-player states. . . . . . . . . . . . . . . . . . . . . 38
7.3 Difference of mean payoffs for 4-player states. . . . . . . . . . . . . . . . . . . . . 39
7.4 Difference of mean payoffs for 3-player states. . . . . . . . . . . . . . . . . . . . . 39
7.5 Winning probabilities in the PI-CFR+ solution. . . . . . . . . . . . . . . . . . . . 44
7.6 Relative difference between PI-CFR+ winning probabilities and the linear approximation. 45
7.7 Mean Absolute Deviation for 5-player states. . . . . . . . . . . . . . . . . . . . . 46
7.8 Mean Absolute Deviation for 4-player states. . . . . . . . . . . . . . . . . . . . . 46
7.9 Mean Absolute Deviation for 3-player states. . . . . . . . . . . . . . . . . . . . . 47

List of Tables

1.1 Positions and order to act Pre- and Postflop. . . . . . . . . . . . . . . . . . . 3
1.2 Five card hand ranks. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

5.1 Size of the rollout lookup depending on players. . . . . . . . . . . . . . . . . . 27
5.2 Decision nodes in jam/fold games with ≤ 3 active players. . . . . . . . . . . . 28
5.3 Tournament states for various games. . . . . . . . . . . . . . . . . . . . . . . 29
5.4 Tournament complexity for the 45 unit game. . . . . . . . . . . . . . . . . . . 30

7.1 Equity statistics summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
7.2 Equity statistics summary, position averaged . . . . . . . . . . . . . . . . . . 37
7.3 Average finishing probabilities for 5-player states . . . . . . . . . . . . . . . . 41
7.4 Average finishing probabilities for 4-player states . . . . . . . . . . . . . . . . 42
7.5 Average finishing probabilities for 3-player states . . . . . . . . . . . . . . . . 43

63



8.1 ex post results summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
8.2 Simulation summary for standard equity models . . . . . . . . . . . . . . . . 51
8.3 Simulation details for Malmuth-Harville . . . . . . . . . . . . . . . . . . . . . 52
8.4 Simulation details for Malmuth-Weitzman . . . . . . . . . . . . . . . . . . . . 52
8.5 Simulation details for Roberts . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
8.6 Simulation results for direct matches . . . . . . . . . . . . . . . . . . . . . . . 53
8.7 Simulation summary for FGS . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

B.01 Simulation details for FGS-1 . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
B.02 Simulation details for FGS-2 . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
B.03 Simulation details for FGS-3 . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
B.04 Simulation details for FGS-4 . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
B.05 Simulation details for FGS-5 . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
B.06 Simulation details for FGS-6 . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
B.07 Simulation details for FGS-7 . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
B.08 Simulation details for FGS-8 . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
B.09 Simulation details for FGS-9 . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
B.010Simulation details for FGS-10 . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

64



List of Algorithms

2.1 Optimized Malmuth-Harville “ICM” . . . . . . . . . . . . . . . . . . . . . . 9

2.2 Optimized Malmuth-Weitzman . . . . . . . . . . . . . . . . . . . . . . . . . 11

4.1 VI-FP [GS08] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

4.2 Future Game Simulation “FGS” . . . . . . . . . . . . . . . . . . . . . . . . 22

4.3 PI-FP [GS09] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

65





Acronyms

BB Big Blind. 2, 12, 23, 24, 29

BU Button. 2

CFR Counterfactual Regret Minimization. 14–16

FGS Future Game Simulation. 19, 31

ICM Independent Chip Model. 7

MAD Mean Absolute Deviation. 33

MAPD Mean Absolute Percentage Deviation. 33, 34, 52

NLHE No Limit Hold’em. 23

SB Small Blind. 2, 12, 20, 24, 27–29, 35, 38, 39

SNG Sit and Go. 4

STT Single Table Tournament. 4, 5, 23, 29, 52

67





Bibliography

[ACP] ACPC. The Annual Computer Poker Competition webpage.
http://www.computerpokercompetition.org/. Accessed: 2015-11-20.

[BBJT15] Michael Bowling, Neil Burch, Michael Johanson, and Oskari Tammelin. Heads-
up limit hold’em poker is solved. Science, 347(6218):145–149, 2015.

[Bro51] George W Brown. Iterative solution of games by fictitious play. Activity
analysis of production and allocation, 13(1):374–376, 1951.

[CA06] B. Chen and J. Ankenman. The Mathematics of Poker. ConJelCo LLC, 2006.

[FL98] Drew Fudenberg and David K Levine. The theory of learning in games,
volume 2. MIT press, 1998.

[Gan15] Sam Ganzfried. My reflections on the first man vs. machine no-limit texas
hold’em competition. arXiv preprint arXiv:1510.08578, 2015.

[GS08] Sam Ganzfried and Tuomas Sandholm. Computing an approximate jam/fold
equilibrium for 3-player no-limit texas hold’em tournaments. In Proceedings
of the 7th International Joint Conference on Autonomous Agents and Multia-
gent Systems - Volume 2, AAMAS ’08, pages 919–925, Richland, SC, 2008.
International Foundation for Autonomous Agents and Multiagent Systems.

[GS09] Sam Ganzfried and Tuomas Sandholm. Computing equilibria in multiplayer
stochastic games of imperfect information. In IJCAI, pages 140–146, 2009.

[Har73] David A Harville. Assigning probabilities to the outcomes of multi-entry
competitions. Journal of the American Statistical Association, 68(342):312–
316, 1973.

[JBL+12] Michael Johanson, Nolan Bard, Marc Lanctot, Richard Gibson, and Michael
Bowling. Efficient nash equilibrium approximation through monte carlo
counterfactual regret minimization. In Proceedings of the 11th International
Conference on Autonomous Agents and Multiagent Systems-Volume 2, pages
837–846. International Foundation for Autonomous Agents and Multiagent
Systems, 2012.

69



[Joh07] Michael Johanson. Robust strategies and counter-strategies: Building a
champion level computer poker player. Master’s thesis, University of Alberta,
2007.

[JWBZ11] Michael Johanson, Kevin Waugh, Michael Bowling, and Martin Zinkevich.
Accelerating best response calculation in large extensive games. In IJCAI,
volume 11, pages 258–265, 2011.

[LZ06] Michael Littman and Martin Zinkevich. The 2006 aaai computer poker
competition. ICGA Journal, 29(3):166, 2006.

[Mic66] Donald Michie. Game-playing and game-learning automata. Advances in
programming and non-numerical computation, pages 183–200, 1966.

[MS07] Peter Bro Miltersen and Troels Bjerre Sørensen. A near-optimal strategy
for a heads-up no-limit texas hold’em poker tournament. In Proceedings of
the 6th international joint conference on Autonomous agents and multiagent
systems, page 191. ACM, 2007.

[PLM06] François Panneton, Pierre L’ecuyer, and Makoto Matsumoto. Improved long-
period generators based on linear recurrences modulo 2. ACM Transactions
on Mathematical Software (TOMS), 32(1):1–16, 2006.

[Pou92] William Poundstone. Prisoner’s dilemma: John von neuman, game theory,
and the puzzle of the bomb, 1992.

[Put05] Martin L Puterman. Markov decision processes: discrete stochastic dynamic
programming. John Wiley & Sons, 2005.

[Rob11] Ben Roberts. A new algorithm for the approximation of icm equities in
tournament poker, 2011.

[RW11] Jonathan Rubin and Ian Watson. Computer poker: A review. Artificial
Intelligence, 175(5):958–987, 2011.

[Sch01] Jonathan Schaeffer. A gamut of games. AI Magazine, 22(3):29, 2001.

[Skl99] David Sklansky. The theory of poker. Two Plus Two Publishing LLC, 1999.

[Tam14] Oskari Tammelin. Solving large imperfect information games using cfr+.
arXiv preprint arXiv:1407.5042, 2014.

[VNM44] John Von Neumann and Oskar Morgenstern. Theory of games and economic
behavior. Princeton university press, 1944.

[ZJBP08] Martin Zinkevich, Michael Johanson, Michael Bowling, and Carmelo Piccione.
Regret minimization in games with incomplete information. In J.C. Platt,
D. Koller, Y. Singer, and S. Roweis, editors, Advances in Neural Information
Processing Systems 20 (NIPS), pages 1729–1736. MIT Press, Cambridge, MA,
2008.

70


	Kurzfassung
	Abstract
	Contents
	Introduction
	Texas Hold'em Poker
	Tournament Poker
	Overview

	Equity Models
	Malmuth-Harville
	Malmuth-Weitzman
	Roberts
	Model Limitations

	Single Hand Equilibrium
	Nash Equilibrium
	Iterative -Nash Approximations
	Fictitious Play
	Counterfactual Regret Minimization
	CFR+ 

	Tournament Equilibrium
	VI-FP
	Future Game Simulation
	PI-FP

	Game Abstraction
	Jam/Fold Play
	Ganzfried/Sandholm Three Player Game
	Complexity Considerations
	Restricting Strategy Space
	Abstraction Summary

	Calculation Overview
	Single Hand Strategies
	Full Tournament Calculation
	FGS

	Equity Comparison
	Deviation Statistics
	Position Averaged Analysis
	Finishing Probabilities
	Winning Probability
	Absolute Payoff Deviation

	Strategy Evaluation
	Equilibrium Quality
	Tournament Simulation
	Simulation Results

	Conclusion
	Summary
	Restrictions and Further Work

	Java Listings
	Detailed FGS Results
	List of Figures
	List of Tables
	List of Algorithms
	Acronyms
	Bibliography

